Cooling of Electronic Equipment

Introduction

Why should we worry about the thermal behavior of electronic equipment?

- A standard Intel Pentium 4 chip is:
 - $10.4 \, mm \times 10.4 \, mm$
 - contains millions of electronic components
 - dissipates approximately 75 watts of power
 - is restricted to a maximum temperature of $85 \, ^\circ C$

This does not seem like a big deal. A 100 W light bulb dissipates more power than this.

Power vs. Heat Flux

100 W light bulb

- Power = 100 W
- Area = 100 cm2
- Flux = 1.0 W/cm2

Pentium 4 Processor

- Power = 75.3 W
- Area = 1.08 cm2
- Flux = 69.7 W/cm2

\textit{70 times larger!}

- the heat flux at the surface on a chip is exceedingly high
• this is primarily because of the miniaturization of electronic devices in order to maximize signal processing speed

• if we track the evolution of Intel processors over the course of the past several decades we see a pattern which is expected to continue for the next several years

• the following figure puts the magnitude of this heat flux into perspective

• the problem is further compounded by the fact that a maximum operating temperature of approximately 85 − 100 °C is necessary in order to ensure long term reliable operation

• failure rate increases dramatically as operating temperatures rise above 100 °C
• electronic cooling presents a significant challenge to design engineers

• is the problem expected to get better anytime soon? not likely. By 2007, Intel expects to have 1 billion transistors/chip! with power dissipation of more that 100 W and heat fluxes of order 1000 W/m².

Therefore we must deal with the problem with engineering solutions that necessitate a good understanding of all forms of heat transfer.