
Basic Concepts of Thermodynamics

Reading Problems
2-1 → 2-10 2-44, 2-59, 2-78, 2-98
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Fluid Mechanics

Heat Transfer
Conservation of mass
Conservation of energy
Second law of thermodynamics
Properties

Fluid statics
Conservation of momentum
Mechanical energy equation
Modeling

Conduction
Convection
Radiation
Conjugate

Thermodynamics: the study of energy, energy transformations and its relation to matter. The anal-
ysis of thermal systems is achieved through the application of the governing conservation
equations, namely Conservation of Mass, Conservation of Energy (1st law of thermodynam-
ics), the 2nd law of thermodynamics and the property relations.

Heat Transfer: the study of energy in transit including the relationship between energy, matter,
space and time. The three principal modes of heat transfer examined are conduction, con-
vection and radiation, where all three modes are affected by the thermophysical properties,
geometrical constraints and the temperatures associated with the heat sources and sinks used
to drive heat transfer.
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Fluid Mechanics: the study of fluids at rest or in motion. While this course will not deal exten-
sively with fluid mechanics we will be influenced by the governing equations for fluid flow,
namely Conservation of Momentum and Conservation of Mass.

Thermodynamics
Microscopic: tracking the movement of matter and energy on a particle by particle basis

Macroscopic: use the conservation equations (energy and mass) to track movement of matter and
energy on an average over a fixed domain (referred to as classical thermodynamics)

Energy

• the total energy of the system per unit mass is denoted as e and is given as

e =
E

m

(
kJ

kg

)

• if we neglect the contributions of magnetic, electric, nuclear energy, we can write the total
energy as

E = U + KE + PE = U +
mV2

2
+ mgz

Dimensions and Units

SI: International System

• SI is the preferred because it is logical (base 10) and needs no correction factors

• unit convention:

Parameter Units Symbol

length, L meters m
mass, m kilograms kg
time, t seconds s
temperature, T kelvin K
velocity, V meter per second, ≡ L/t m/s
acceleration, a meter per second squared ≡ L/t2 m/s2

force, F newton, ≡ m · L/t2 N
energy, E joule ≡ m · L2/t2 J
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Thermodynamic Systems

Isolated Boundary

System

Surroundings

Work

Heat

System Boundary

(real or imaginary

fixed or deformable)

System

- may be as simple

as a melting ice cube

- or as complex as a

nuclear power plant

Surroundings

- everything that interacts

with the system

SYSTEM:

Closed System: composed of a control (or fixed) mass where heat and work can cross the
boundary but no mass crosses the boundary.

Open System: composed of a control volume (or region in space) where heat, work, and
mass can cross the boundary or the control surface

weights

piston

gas
system

boundary

g fan

engine core

Closed System Open System

by-pass flow

WORK & HEAT TRANSFER:

• work and heat transfer are NOT properties → they are the forms that energy takes to
cross the system boundary
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Thermodynamic Properties of Systems

Basic Definitions

Thermodynamic Property: Any observable or measurable characteristic of a system. Any math-
ematical combination of the measurable characteristics of a system

Intensive Properties: Properties which are independent of the size (or mass) of the system

• they are not additive ⇒ XA+B �= XA + XB

• examples include: pressure, temperature, and density

Extensive Properties: Properties which are dependent of the size (or mass) of the system

• they are additive ⇒ XA+B = XA + XB

• examples include: volume, energy, entropy and surface area

Specific Properties: Extensive properties expressed per unit mass to make them intensive prop-
erties

• specific property (intensive) −→ extensive property

mass

Measurable Properties

• P, V, T, and m are important because they are measurable quantities. Many other thermo-
dynamic quantities can only be calculated and used in calculations when they are related to
P, V, T, and m

– Pressure (P ) and Temperature (T ) are easily measured intensive properties.
Note: They are not always independent of one another.

– Volume (V ) and mass (m) are easily measured extensive properties

Pressure

• Pressure =
Force

Area
; → N

m2
≡ Pa

– in fluids, this is pressure (normal component of force per unit area)

– in solids, this is stress
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absolute

pressure

gauge

pressure

vacuum

pressure

absolute

vacuum pressure

ABSOLUTE

ATMOSPHERIC

PRESSURE
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Temperature

• temperature is a pointer for the direction of energy transfer as heat

Q Q
TA

TA

TA

TA

TB

TB

TB

TB

> <

0th Law of Thermodynamics: if system C is in thermal equilibrium with system A,
and also with system B, then TA = TB = TC

State and Equilibrium

State Postulate

• how long does the list of intensive properties have to be in order to describe the intensive
state of the system?
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same

substance

A B

m = 10 kgA
m = 0.1 kgB

T = 500 K

P = 0.1 MPa

v = 0.5 m /kg

u = 3.0 kJ/kg

.

.

.

3

• System A and B have the same intensive state, but totally different extensive states.

State Postulate (for a simple compressible system): The state of a simple
compressible system is completely specified by 2 independent and intensive properties.

• note: a simple compressible system experiences negligible electrical, magnetic, gravita-
tional, motion, and surface tension effects, and only PdV work is done

• in a single phase system, T, v, and P are independent and intensive (in a multiphase system
however, T and P are not independent)

• if the system is not simple, for each additional effect, one extra property has to be known to
fix the state. (i.e. if gravitational effects are important, the elevation must be specified and
two independent and intensive properties)

• it is important to be able to:

– find two appropriate properties to fix the state

– find other properties when the state is fixed (we will discuss this later)

Thermodynamic Processes

• the process is any change from one equilibrium state to another. (If the end state = initial
state, then the process is a cycle)
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• the process path is a series intermediate states through which a system passes during the
process (we very seldom care what the process path is)

• processes are categorized based on how the properties behave:

– isobaric (P = constant)

– isothermal (T = constant)

– isochoric or isometric (V = constant)

– isentropic (s = constant)

– isenthalpic (h = constant)

– adiabatic (no heat transfer)

Stored Energy
• how is energy stored in matter?

Stored Energy = E = KE + PE + U

• Kinetic Energy: Energy due to motion of the matter with respect to an external reference
frame (KE = mV2/2)

• Potential Energy: Energy due to the position of the matter in a force field (gravitational,
magnetic, electric). It also includes energy stored due to elastic forces and surface tension
(PE = mgz)

• Internal Energy = microscopic forms of energy, U )

– forms of the energy in the matter due to its internal structure (independent of external
reference frames)

Transit Energy

Heat

• transit form of energy that occurs when there is ΔT (a temperature gradient)

• notation - Q (kJ), q (kJ/kg), Q̇ (kW ), q̇ (kW/kg)

Work

• transit form of energy that occur due to all other driving forces

• notation - W (kJ), w (kJ/kg), Ẇ (kW ), ẇ (kW/kg)
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Properties of Pure Substances

Reading Problems
3-1 → 3-7 3-49, 3-52, 3-57, 3-70, 3-75, 3-106,
3-9 → 3-11 3-121, 3-123

Pure Substances

• a Pure Substance is the most common material model used in thermodynamics.

– it has a fixed chemical composition throughout (chemically uniform)

– a homogeneous mixture of various chemical elements or compounds can also be con-
sidered as a pure substance (uniform chemical composition)

– a pure substance is not necessarily physically uniform (different phases)

Phases of Pure Substances
• a pure substance may exist in different phases, where a phase is considered to be a physically

uniform

• 3 principal phases:

Solids:

– strong molecular bonds

– molecules form a fixed (but vibrating) structure (lattice)

Liquids:

– molecules are no longer in a fixed position relative to one another

– molecules float about each other

Gases:

– there is no molecular order

– intermolecular forces ≈ 0

Behavior of Pure Substances (Phase Change Processes)
• Critical Point: liquid and vapor phases are not distinguishable

• Triple point: liquid, solid, and vapor phases can exist together
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T − v Diagram for a Simple Compressible Substance
• consider an experiment in which a substance starts as a solid and is heated up at constant

pressure until it all becomes as gas

• depending on the prevailing pressure, the matter will pass through various phase transforma-
tions. At P0:

1. solid

2. mixed phase of liquid and solid

3. sub-cooled or compressed liquid

4. wet vapor (saturated liquid-vapor mixture)

5. superheated vapor

The Vapor Dome

• general shape of a P − v diagram for a pure substance is similar to that of a T − v diagram

v

critical point

vfg

subcooled

liquid

saturated

liquid line

L+G

vf vg

P

P (T)sat

saturated

vapor line

gas (vapor)

two-phase region

(saturated liquid &

saturated vapor)

Tcr
T

T

• express values of properties for conditions on the vapor dome as:

specific volume: vf , vg and vfg = vg − vf

internal energy: uf , ug and ufg = ug − uf

specific enthalpy: hf , hg and hfg = hg − hf

specific entropy: sf , sg and sfg = sg − sf

3



• in the two phase region, pressure and temperature cannot be specified independently

Psat = P (Tsat) ⇔ Tsat = T (Psat)

this only holds true under the vapor dome in the two-phase region.

The Two-Phase Region

Quality ⇒ x =
mg

m
=

mg

mg + mf

L

G
x = m /mg

1-x = m /mf

total mass of mixture ⇒ m = mg + mf

mass fraction of the gas ⇒ x = mg/m

mass fraction of the liquid ⇒ 1 − x = mf/m

Properties of Saturated Mixtures

• all the calculations done in the vapor dome can be performed using Tables.

– in Table A-4, the properties are listed under Temperature

– in Table A-5, the properties are listed under Pressure

• use if given mixture:

1) is saturated, 2) has a quality, 3) liquid & vapor are present

v =
V

m
=

Vf + Vg

m
=

mfvf + mgvg

m
= (1 − x) vf + x vg

= vf + x(vg − vf)

= vf + x vfg

x =
v − vf

vfg
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Properties of Superheated Vapor

• superheated vapor is a single phase (vapor phase only).

– T and P are independent of each other in the single-phase region

– properties are typically calculated as a function of T and P

v

L

L+G
G

T

T (P)sat

P

P
P = 100 kPa

state: 200 C and 100 kPao

T = 200 Co

Properties of Sub-cooled Liquid

v

L L+G
G

T

T (P)sat

P

P

P = 100 kPa

state: 20 C and 100 kPao

T = 20 Co
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• can be treated as incompressible (independent of P )

v = v(T, P ) ⇒ v ≈ v(T ) = vf(T )

u = u(T, P ) ⇒ u ≈ u(T ) = uf(T )

s = s(T, P ) ⇒ s ≈ s(T ) = sf(T )

• while property values for the sub-cooled liquids are not available as a function of temperature
and pressure, they are available as a function of temperature only.

• for enthalpy:

h(T, P ) = u(T, P ) + v(T, P )P ≈ uf(T ) + vf(T )P

= uf(T ) + vf(T )Psat(T )︸ ︷︷ ︸
hf (T )

+vf(T )[P − Psat(T )]

= hf(T ) + vf(T )[P − Psat(T )]

Equation of State for Gaseous Pure Substances

Thermodynamic relations are generally given in three different forms:

Tables: water (Tables A-4 → A-8), R134a (Tables A-11 → A-13)

Graphs: water (Figures A-9 & A-10), R134a (Figure A-14)

Equations: air (Tables A-2 & 3-4)

• since most gases are highly superheated at atmospheric conditions. This means we have to
use the superheat tables – but this can be very inconvenient

• a better alternative for gases: use the Equation of State which is a functional relationship
between P, v, and T (3 measurable properties)

Ideal Gases

• gases that adhere to a pressure, temperature, volume relationship

Pv = RT or PV = mRT

referred to as ideal gases
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– where R is the gas constant for the specified gas of interest (R = Ru/M̃ )

Ru = Universal gas constant, ≡ 8.314 kJ/(kmol · K)

M̃ = molecular wieght (or molar mass) of the gas (see Table A-1))

• When is the ideal gas assumption viable?

– for a low density gas where:

∗ the gas particles take up negligible volume

∗ the intermolecular potential energy between particles is small

∗ particles act independent of one another

– Under what conditions can it be used?

∗ low density

∗ high temperatures - considerably in excess of the saturation region

∗ at very low pressures

Real Gases

• experience shows that real gases obey the following equation closely:

Pv = ZRT (T and P are in absolute terms)

– this equation is used to find the third quantity when two others are known

– Z is the compressibility factor

– Note: Rair = 0.287 kJ/kg · K, RH2 = 4.124 kJ/kg · K

• what is the compressibility factor (Z)?

– Z charts are available for different gases, but there are generalized Z charts that can
be used for all gases

– if we “reduce” the properties with respect to the values at the critical point, i.e.

reduced pressure = Pr =
P

Pc

Pc = critical pressure

reduced temperature = Tr =
T

Tc

Tc = critical temperature
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Reference Values for u, h, s

• values of enthalpy, h and entropy, s listed in the tables are with respect to a datum where we
arbitrarily assign the zero value. For instance:

Tables A-4, A-5, A-6 & A-7: saturated and superheated water - the reference for both hf

and sf is taken as 0 ◦C. This is shown as follows:

uf(@T = 0 ◦C) = 0 kJ/kg

hf(@T = 0 ◦C) = 0 kJ/kg

sf(@T = 0 ◦C) = 0 kJ/kg · K

Tables A-11, A-12 & A-13: saturated and superheated R134a - the reference for both hf

and sf is taken as −40 ◦C. This is shown as follows:

hf(@T = −40 ◦C) = 0 kJ/kg

hf(@T = −40 ◦C) = 0 kJ/kg

sf(@T = −40 ◦C) = 0 kJ/kg · K

Others: sometimes tables will use 0 K as the reference for all tables. While this standard-
izes the reference, it tends to lead to larger values of enthalpy and entropy.

Calculation of the Stored Energy

• for most of our 1st law analyses, we need to calculate ΔE

ΔE = ΔU + ΔKE + ΔPE

• for stationary systems, ΔKE = ΔPE = 0

• in general: ΔKE =
1

2
m(V2

2 − V2
1) and ΔPE = mg(z2 − z1)

• how do we calculate ΔU?

1. one can often find u1 and u2 in the thermodynamic tables (like those examined for the
states of water).

2. we can also explicitly relate ΔU to ΔT (as a mathematical expression) by using the
thermodynamic properties Cp and Cv.
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Specific Heats: Ideal Gases

• for any gas whose equation of state is exactly

Pv = RT

the specific internal energy depends only on temperature

u = u(T )

• the specific enthalpy is given by

h = u + Pv

where

h(T ) = u(T ) + RT

Note: Since u = u(T ), and R is a constant, enthalpy is only a function of temperature.

• for an ideal gas

Cv =
du

dT
⇒ Cv = Cv(T ) only

Cp =
dh

dT
⇒ Cp = Cp(T ) only

From the equation for enthalpy,

RT = h(T ) − u(T )

If we differentiate with respect to T

R =
dh

dT
− du

dT

R = Cp − Cv
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• the calculation of Δu and Δh for an ideal gas is given as

Δu = u2 − u1 =
∫ 2

1
Cv(t) dT (kJ/kg)

Δh = h2 − h1 =
∫ 2

1
Cp(t) dT (kJ/kg)

• to carry out the above integrations, we need to know Cv(T ) and Cp(T ). These are available
from a variety of sources

Table A-2a: for various materials at a fixed temperature of T = 300 K

Table A-2b: various gases over a range of temperatures 250 K ≤ T ≤ 1000 K

Table A-2c: various common gases in the form of a third order polynomial

Specific Heats: Solids and Liquids

• solids and liquids are incompressible. (i.e., ρ = constant).

• for solids and liquids it can be shown (mathematically) that for incompressible materials:

Cp = Cv = C and dQ = mCdT

• Table A-3 gives C for incompressible materials

• as with ideal gases, for incompressible materials C = C(T )

Δu =
∫ 2

1
C(T ) dT ≈ Cavg ΔT

Δh = Δu + Δ(Pv) = Δu + vΔP ≈ CavgΔT + vΔP

– for solids:

Δh = Δu = CavgΔT (vΔP is negligible)

– for liquids:

If P = const, Δh = CavgΔT

If T = const, Δh = vΔP (we already used this to do more accurate

calculations in the subcooled region).
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First Law of Thermodynamics

Reading Problems
4-1 → 4-6 4-19, 4-24, 4-42, 4-61, 4-65
5-1 → 5-5 5-37, 5-67, 5-84, 5-104, 5-120, 5-141, 5-213

Control Mass (Closed System)

A thermodynamic analysis of a system can be performed on a fixed amount of matter known as a
control mass or over a region of space, known as a control volume.

Conservation of Mass

Conservation of Mass, which states that mass cannot be created or destroyed, is implicitly satisfied
by the definition of a control mass.

Conservation of Energy

The first law of thermodynamics states:

Energy cannot be created or destroyed it can only change forms.

• energy transformation is accomplished through energy transfer as work and/or heat. Work
and heat are the forms that energy can take in order to be transferred across the system
boundary.

• the first law leads to the principle of Conservation of Energy where we can stipulate the
energy content of an isolated system is constant.

energy entering − energy leaving = change of energy within the system

1



Sign Convention

There are many potential sign conventions that can be used.

Cengel Approach

Heat Transfer: heat transfer to a system is positive and heat transfer from a system is negative.

Work Transfer: work done by a system is positive and work done on a system is negative.

Culham Approach

Anything directed into the system is positive, anything directed out of the system is negative.
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Example: A Gas Compressor

Performing a 1st law energy balance:

⎧⎪⎨
⎪⎩

Initial
Energy

E1

⎫⎪⎬
⎪⎭ +

−

{
Energy gain W1−2

Energy loss Q1−2

}
=

⎧⎪⎨
⎪⎩

Final
Energy

E2

⎫⎪⎬
⎪⎭

A first law balance for a control mass can also be written in differential form as follows:

dE = δQ − δW

Note: d or Δ for a change in property and δ for a path function

Forms of Energy Transfer

Work Versus Heat
• Work is macroscopically organized energy transfer.

• Heat is microscopically disorganized energy transfer.
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Heat Energy
• Notation:

– Q (kJ) amount of heat transfer

– Q̇ (kW ) rate of heat transfer (power)

– q (kJ/kg) - heat transfer per unit mass

– q̇ (kW/kg) - power per unit mass

• modes of heat transfer:

– conduction: diffusion of heat in a stationary medium (Chapters 8 & 9)

– convection: it is common to include convective heat transfer in traditional heat transfer
analysis. However, it is considered mass transfer in thermodynamics. (Chapters 10 &
11)

– radiation: heat transfer by photons or electromagnetic waves (Chapter 12)

Work Energy

• Notation:

– W (kJ) amount of work transfer

– Ẇ (kW ) power

– w (kJ/kg) - work per unit mass

– ẇ (kW/kg) - power per unit mass

• work transfer mechanisms in general, are a force acting over a distance

Mechanical Work

• force (which generally varies) times displacement

W12 =
∫ 2

1
F ds

4



Moving Boundary Work

• compression in a piston/cylinder, where A is
the piston cross sectional area (frictionless)

• the area under the process curve on a P − V

diagram is proportional to
∫ 2

1
P dV

• the work is:

– +ve for compression

– −ve for expansion

• sometimes called P dV work or
compression /expansion work

W12 = −
∫ 2

1
F ds = −

∫ 2

1
P · A ds = −

∫ 2

1
P dV

Polytropic Process: where PV n = C

• examples of polytropic processes include:

Isobaric process: if n = 0 then P = C and we have a constant pressure process

Isothermal process: if n = 1 then from the ideal gas equation PV = RT and PV is
only a function of temperature

Isometric process: if n → ∞ then P 1/nV = C1/n and we have a constant volume
process

Isentropic process: if n = k = Cp/Cv then we have an isentropic process
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Gravitational Work

Work is defined as force through a distance

W12 =
∫ 2

1
Fds

Since in the case of lifting an object, force and displacement are in the same direction, the work
will be positive and by definition positive work is into the system.

W12 =
∫ 2

1
F ds =

∫ 2

1
mg ds =

∫ 2

1
mg dz

• integrating from state 1 to state 2 gives

W12 = mg(z2 − z1)

• the potential energy of the system increases with an addition of gravitational work,
ΔPE = W = mg(z2 − z1)

Acceleration Work

• if the system is accelerating, the work associated with the change of the velocity can be
calculated as follows:

W12 =
∫ 2

1
F ds =

∫ 2

1
ma ds =

∫ 2

1
m

dV
dt

ds =
∫ 2

1
m dV ds

dt︸︷︷︸
V

and we can then write

W12 =
∫ 2

1
mV dV = m

(V2
2

2
− V2

1

2

)

• if we drop an object with the assistance of gravity, the first law balance gives
ΔPE + ΔKE = 0. Potential energy decreases and kinetic energy increases.
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Charge Transfer Work (Electrical Work)

• current, I is the rate of charge transfer

I ≡ d q+

dt
,

coulomb

sec
= Ampere

where

q+ = −Ne

with N being the number of electrons and e the charge of the electron.

• the electrical work done is given as

δWe = (ε1 − ε2) dq+ = ε dq+

where ε is the electrical potential difference with units volt =
Joule

Coulomb

• the electrical work done per unit time is power

Ẇe = Power =
δWe

dt
= εI (W )

We =
∫ 2

1
ε I dt

= ε IΔt
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Control Volume (Open System)

The major difference between a Control Mass and and Control Volume is that mass crosses the
system boundary of a control volume.

CONSERVATION OF MASS:

Unlike a control mass approach, the control volume approach does not implicitly satisfy
conservation of mass, therefore we must make sure that mass is neither created nor destroyed
in our process.

m

mIN

OUT

mcv

cv

⎧⎪⎨
⎪⎩

rate of increase
of mass within

the CV

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

net rate of
mass flow

IN

⎫⎪⎬
⎪⎭ −

⎧⎪⎨
⎪⎩

net rate of
mass flow

OUT

⎫⎪⎬
⎪⎭

d

dt
(mCV ) = ṁIN − ṁOUT

where:

mCV =
∫

V
ρ dV

ṁIN = (ρ V A)IN

ṁOUT = (ρ V A)OUT

with V = average velocity
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CONSERVATION OF ENERGY:

The 1st law states:

ECV (t) + δQ + δWshaft + (ΔEIN − ΔEOUT )+

(δWIN − δWOUT ) = ECV (t + Δt) (1)

where:

ΔEIN = eINΔmIN

ΔEOUT = eOUTΔmOUT

δW = flow work

e =
E

m
= u︸︷︷︸

internal

+
V2

2︸︷︷︸
kinetic

+ gz︸︷︷︸
potential
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What is flow work?

This is the work required to pass the flow across the system boundaries. When mass enters/leaves
a control volume, some work is done on/by the control volume.

ΔmIN = ρIN

volume︷ ︸︸ ︷
AIN VIN Δt

δWIN = F · distance

= PIN AIN︸ ︷︷ ︸
F

· VIN Δt︸ ︷︷ ︸
Δs

=
PIN ΔmIN

ρIN

with

v =
1

ρ

δWIN = (P v Δm)IN → flow work (2)

Similarly

δWOUT = (P v Δm)OUT (3)
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Substituting Eqs. 2 and 3 into Eq. 1 gives the 1st law for a control volume

ECV (t + Δt) − ECV (t) = δQ + δWshaft + ΔmIN(e + Pv)IN

− ΔmOUT (e + Pv)OUT (4)

Equation 4 can also be written as a rate equation → divide through by Δt and take the limit as
Δt → 0

d

dt
ECV = Q̇ + Ẇshaft + [ṁ(e + Pv)]IN − [ṁ(e + Pv)]OUT

where:

ṁ = ρ v∗ A

Note that:

e + Pv = u + Pv︸ ︷︷ ︸ +
(v∗)2

2
+ gz

= h(enthalpy) + KE + PE

By using enthalpy instead of the internal energy to represent the energy of a flowing fluid, one does
not need to be concerned with the flow work.
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Some Practical Assumptions for Control Volumes

Steady State Process: The properties of the material inside the control volume do not change
with time. For example

P1 P2

P > P2 1

V < V2 1

Diffuser: P changes inside the control volume, but
the pressure at each point does not change with
time.

Steady Flow Process: The properties of the material crossing the control surface do not change
with time. For example

y

x

T = T(y)

T ≠ T(t)

Inlet Pipe: T at the inlet may be different at differ-
ent locations, but temperature at each boundary
point does not change with time.

The steadiness refers to variation with respect to time

• if the process is not steady, it is unsteady or transient

• often steady flow implies both steady flow and steady state

Uniform State Process: The properties of the material inside the control volume are uniform and
may change with time. For example

50 Co
50 Co

50 Co
50 Co

60 Co
60 Co

60 Co
60 Co

Q

t=0

t=10

Heating Copper: Cu conducts heat well, so that it
heats evenly.
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Uniform Flow Process: The properties of the material crossing the control surface are spatially
uniform and may change with time. For example

y

x

P ≠ P(y)
Inlet Pipe: P at the inlet is uniform

across y.

Uniformity is a concept related to the spatial distribution. If the flow field in a process is not
uniform, it is distributed.

Steady-State, Steady-Flow Process

Idealizations:

• the control volume does not move relative to the reference frame

• the state of the mass at each point with the control volume does not change with time

• the flows in and out of the control volume are steady, i.e. there is no mass accumulation
within the control volume

• the rates at which work and heat cross the control volume boundary remain constant

13



Control Volume Analysis for Electrical Devices

We recall from the 1st law for a control volume

dEcv

dt
= Q̇ − Ẇ + ṁin(e + Pv)in − ṁout(e + Pv)out

We can consider the following analogy

Let

N = number of charged particles
q+ = +ve charge on each particle

Nq+ = total charge
mq = mass of each charged particle

Nmq = total mass of the “charge gas”
Ṅmq = flow rate of the “charge gas”

ε = electrical potential

ṁ(e + Pv) = (Ṅmq)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u + Pv +
V2

2
+ gz︸ ︷︷ ︸

negligible

+
(Nq+)ε

(Nmq)︸ ︷︷ ︸
electrical potential

per unit mass

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ṁ(e + Pv) = (Ṅmq

(
(Nq+)ε

(Nmq)

)

14



= Ṅq+ε

= Iε

where I = current ≡ Ṅq+ = −Ṅe

The first law takes the form

dEcv

dt
= Q̇ − Ẇ + (Ṅq+ε)in − (Ṅq+ε)out

15



Entropy and the Second Law of Thermodynamics

Reading Problems
6-1, 6-2, 6-7, 6-8, 6-11 6-81, 6-87,
7-1 → 7-10, 7-12, 7-13 7-39, 7-46, 7-61, 7-89, 7-111,

7-122, 7-124, 7-130, 7-155, 7-158

Why do we need another law in thermodynamics?

Answer: While the 1st law allowed us to determine the quantity of energy transfer in a process
it does not provide any information about the direction of energy transfer nor the quality of
the energy transferred in the process. In addition, we can not determine from the 1st law
alone whether the process is possible or not. The second law will provide answers to these
unanswered questions.

A process will not occur unless it satisfies both the first and the second laws of thermody-
namics.

1. Direction:

Consider an isolated system where Q = W = 0

From the 1st law we know

(U + KE)1︸ ︷︷ ︸
E1

= U2︸︷︷︸
E2

⎧⎪⎨
⎪⎩

same both ways
1 → 2
2 → 1

gasgas

possible

impossible

1: cold system

propeller &

gas rotating

2: warm system

propeller &

gas stationary

The physical interpretation of this is:

1



State 1: Most of the energy is in a highly organized form residing in the macroscopic KE
of the propeller and the rotating gas.

State 2: All of the energy is now in a disorganized form residing in the microscopic E, i.e.
U of the propeller and the gas.

• The process 1 → 2 has resulted in a higher state of molecular chaos. ENTROPY is
the thermodynamic property that describes the degree of molecular disorder in matter.
Hence, S2 > S1. Entropy can be considered a quantitative index that describes the
quality of energy.

• The process 2 → 1 is impossible because it would require disorganized KE to pro-
duce macroscopically organized KE. That is S2 < S1 which is impossible for an
isolated system.

• A thermodynamic process is only possible if it satisfies both the 1st and 2nd laws
simultaneously.

2. Quality of Energy:

A heat engine produces reversible work as it transfers heat from a high temperature reservoir
at TH to a low temperature reservoir at TL. If we fix the low temperature reservoir at
TL = 300 K, we can determine the relationship between the efficiency of the heat engine,

η = 1 − QL

QH

= 1 − TL

TH

as the temperature of the high temperature reservoir changes. In effect we are determin-
ing the quality of the energy transferred at high temperature versus that transferred at low
temperature.

TH

TL

reversible

heat engine Wrev

QH

QL

2



TL (K) TH (K) η

300 1000 0.700
300 800 0.625
300 600 0.500
300 400 0.250

Since the purpose of the heat engine is to convert heat energy to work energy, we can clearly
see that more of the high temperature thermal energy can be converted to work. Therefore
the higher the temperature, the higher the quality of the energy.

Second Law of Thermodynamics

The second law of thermodynamics states:

The entropy of an isolated system can never decrease. When an isolated system
reaches equilibrium, its entropy attains the maximum value possible under the
constraints of the system

Definition

PS = Sgen = S2 − S1 ≥ 0 → 2nd law

• the 2nd law dictates why processes occur in a specific direction i.e., Sgen cannot be −ve

• The second law states, for an isolated system:

(ΔS)system + (ΔS)surr. ≥ 0

where Δ ≡ final − initial

Gibb’s Equation

From a 1st law energy balance when KE and PE are neglected

Energy Input = Energy Output + Increase in Energy Storage

3



δQ︸︷︷︸
amount

= δW + dU︸︷︷︸
differential

(1)

We know that the differential form of entropy is

dS =
δQ

T
(2) δW = PdV (3)

Combining Eqs. 1, 2 and 3

dS =
dU

T
+

PdV

T
⇒ ds =

du

T
+

Pdv

T︸ ︷︷ ︸
per unit mass

2nd Law Analysis for a Closed System (Control Mass)

MER TER

CM

dW dQ

TTER

We can first perform a 1st law energy balance on the system shown above.

dU = δQ + δW (1)

For a simple compressible system

δW = −PdV (2)

From Gibb’s equation we know

TTER dS = dU + PdV (3)

4



Combining (1), (2) and (3) we get

TTER dS = δQ

Therefore

(dS)CM︸ ︷︷ ︸
≡ storage

=
δQ

TTER︸ ︷︷ ︸
≡ entropy flow

+ dPS︸ ︷︷ ︸
≡ production

Integrating gives

(S2 − S1)CM =
Q1−2

TTER

+ Sgen︸ ︷︷ ︸
≥0

where

Q1−2

TTER

- the entropy associated with heat transfer across a

finite temperature difference, i.e. T > 0
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2nd Law Analysis for Open Systems (Control Volume)

TER

TER

MER

AA

B

B

FR

FR

CV

S= s m

S= -s m

B

A

1-2

1-2

1-2

1-2

1-2

1-2

1-2

1-2

1-2

B

A

A

B

A

B

B

A

A

B

S= - Qd

S= Qd

T

T

TER

TER

dQ

dQm

m

SCV
dW

S=0

isolated S 0gen ≥

δSgen = (ΔS)sys + (ΔS)sur

δSgen = ΔSCV︸ ︷︷ ︸
system

+

(
−sAmA

1−2 + sBmB
1−2 −

δQA
1−2

T A
TER

+
δQB

1−2

T B
TER

)
︸ ︷︷ ︸

surroundings

or as a rate equation

Ṡgen =

(
dS

dt

)
CV

+

⎛
⎝sṁ +

Q̇

TTER

⎞
⎠

OUT

−
⎛
⎝sṁ +

Q̇

TTER

⎞
⎠

IN

This can be thought of as

generation = accumulation + OUT − IN

6



Reversible Process

Example: Slow adiabatic compression of a gas

A process 1 → 2 is said to be reversible if the reverse process 2 → 1 restores the system to its
original state without leaving any change in either the system or its surroundings.

→ idealization where S2 = S1 ⇒ Sgen = 0

T2 > T1 ⇒ increased microscopic disorder

V2 < V1 ⇒ reduced uncertainty about the whereabouts of molecules

Reversible︸ ︷︷ ︸
Sgen=0

+ Adiabatic Process︸ ︷︷ ︸
Q=0

⇒ Isentropic Process︸ ︷︷ ︸
S1=S2
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Calculation of Δs in Processes

T

s

dA = T ds

process path

1

2

ds

• the area under the curve on a T − s diagram is the heat transfer for internally reversible
processes

qint,rev =
∫ 2

1
T ds and qint,rev,isothermal = TΔs

Tabulated Calculation of Δs for Pure Substances
Calculation of the Properties of Wet Vapor:

Use Tables A-4 and A-5 to find sf , sg and/or sfg for the following

s = (1 − x)sf + xsg s = sf + xsfg

Calculation of the Properties of Superheated Vapor:

Given two properties or the state, such as temperature and pressure, use Table A-6.

Calculation of the Properties of a Compressed Liquid:

Use Table A-7. In the absence of compressed liquid data for a property sT,P ≈ sf@T

8



Calculation of Δs for Incompressible Materials

- for an incompressible substance, dv = 0, and Cp = Cv = C

ds =
du

T
= C

dT

T

s2 − s1 =
∫ 2

1
C(T )

dT

T

Δs = Cavg ln
T2

T1

where Cavg = [C(T1) + C(T2)]/2

Calculation of Δs for Ideal Gases

For an ideal gas with constant Cp and Cv

Ideal Gas Equation ⇒ Pv = RT

du = Cv dT ⇒ u2 − u1 = Cv(T2 − T1)

dh = Cp dT ⇒ h2 − h1 = Cp(T2 − T1)

There are 3 forms of a change in entropy as a function of T & v, T & P , and P & v.

s2 − s1 = Cv ln
T2

T1

+ R ln
v2

v1

= Cp ln
T2

T1

− R ln
P2

P1

= Cp ln
v2

v1

+ Cv ln
P2

P1

By setting the above equations to zero (isentropic, i.e. Δs = 0) we can obtain the isentropic equations

T2

T1

=

(
P2

P1

)(k−1)/k

=

(
v1

v2

)(k−1)

where k = Cp/Cv which can be found tabulated in Table A-2 for various gases.
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The Carnot Cycle
• an ideal theoretical cycle that is the most efficient conceivable

• based on a fully reversible heat engine - it does not include any of the irreversibilities asso-
ciated with friction, viscous flow, etc.

• in practice the thermal efficiency of real world heat engines are about half that of the ideal,
Carnot cycle

T

T

T

s s s

Q

Q

Q

W

P = P

P = P

H

H

L
L

1

1

2

4

4

3

in
out

Process State Points Description

Pump 1 → 2 isentropic compression from TL → TH

to return vapor to a liquid state
Heat Supply 2 → 3 heat is supplied at constant

temperature and pressure
Work Output 3 → 4 the vapor expands isentropically

from the high pressure and temperature
to the low pressure

Condenser 4 → 1 the vapor which is wet at 4 has to be
cooled to state point 1

The cycle is totally reversible.

The reversed Carnot cycle is called the Carnot refrigeration cycle.
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Conduction Heat Transfer

Reading Problems
17-1 → 17-6 17-35, 17-57, 17-68, 17-81, 17-88, 17-110
18-1 → 18-2 18-14, 18-20, 18-34, 18-52, 18-80, 18-104

Fourier Law of Heat Conduction

x=0

xx

x+ xD

x=L
insulated

Qx

Qx+ xD

g
A

The general 1-D conduction equation is given as

∂

∂x

(
k

∂T

∂x

)
︸ ︷︷ ︸

longitudinal
conduction

+ ġ︸︷︷︸
internal

heat
generation

= ρC
∂T

∂t︸ ︷︷ ︸
thermal
inertia

where the heat flow rate, Q̇x, in the axial direction is given by Fourier’s law of heat conduction.

Q̇x = −kA
∂T

∂x

Thermal Resistance Networks

Resistances in Series

The heat flow through a solid material of conductivity, k is

Q̇ =
kA

L
(Tin − Tout) =

Tin − Tout

Rcond

where Rcond =
L

kA

1



The total heat flow across the system can be written as

Q̇ =
T∞1 − T∞2

Rtotal

where Rtotal =
4∑

i=1

Ri

This is analogous to current flow through electrical circuits where, I = ΔV/R

Resistances in Parallel

T1

Q1

T2

Q2

L

R1

k2

k1

R2

In general, for parallel networks we can use a parallel resistor network as follows:

where

1

Rtotal

=
1

R1

+
1

R2

+
1

R3

+ · · ·

2



T1
T1T2 T2

R1

RtotalR2

R3

=

and

Q̇ =
T1 − T2

Rtotal

Cylindrical Systems

L

r1
r2

Qr

T1

T2

A=2 rLp

k

r

Steady, 1D heat flow from T1 to T2 in a cylindrical systems occurs in a radial direction where the
lines of constant temperature (isotherms) are concentric circles, as shown by the dotted line in the
figure above and T = T (r).

T2 − T1 = − Q̇r

2πkL(ln r2 − ln r1) = − Q̇r

2πkL ln
r2

r1

Therefore we can write

Q̇r =
T2 − T1(

ln(r2/r1)

2πkL

) where R =

(
ln(r2/r1)

2πkL

)

3



Critical Thickness of Insulation

Consider a steady, 1-D problem where an insulation cladding is added to the outside of a tube with
constant surface temperature Ti. What happens to the heat transfer as insulation is added, i.e. we
increase the thickness of the insulation?

The resistor network can be written as a series combination of the resistance of the insulation, R1

and the convective resistance, R2

Rtotal = R1 + R2 =
ln(ro/ri)

2πkL +
1

h2πroL

Note: as the thickness of the insulation is increased the outer radius, ro increases.

Could there be a situation in which adding insulation increases the overall heat transfer?

To find the critical radius, rc, where adding more insulation begins to decrease heat transfer, set

dRtotal

dro

= 0

dRtotal

dro

=
1

2πkroL
− 1

h2πr2
oL = 0

rc =
k

h

4



Heat Generation in a Solid

Heat can be generated within a solid as a result of resistance heating in wires, chemical reactions,
nuclear reactions, etc.

A volumetric heat generation terms will be defined as follows:

ġ =
Ėg

V
(W/m3)

for heat generation in wires, we will define ġ as

ġ =
I2Re

πr2
oL

Slab System

5



T =
T1 + T2

2
−

(
T1 − T2

2

)
x

L
+

q̇L2

2k

(
1 −

(x

L

)2
)

Cylindrical System

T = Ts +
ġr2

0

4k

⎛
⎝1 −

(
r

r0

)2
⎞
⎠

where

BC1 :
dT

dr
= 0 @r = 0

BC2 : T = Ts @r = r0

Heat Transfer from Finned Surfaces

The temperature difference between the fin and the surroundings (temperature excess) is usually
expressed as

θ = T (x) − T∞

6



which allows the 1-D fin equation to be written as

d2θ

dx2
− m2θ = 0

where the fin parameter m is

m =

(
hP

kAc

)1/2

and the boundary conditions are

θ = θb @ x = 0

θ → 0 as x → ∞

The solution to the differential equation for θ is

θ(x) = C1 sinh(mx) + C2 cosh(mx)

substituting the boundary conditions to find the constants of integration

θ = θb

cosh[m(L − x)]

cosh(mL)

The heat transfer flowing through the base of the fin can be determined as

Q̇b = Ac

(
−k

dT

dx

)
@x=0

= θb(kAchP )1/2 tanh(mL)

Fin Efficiency and Effectiveness

The dimensionless parameter that compares the actual heat transfer from the fin to the ideal heat
transfer from the fin is the fin efficiency

η =
actual heat transfer rate

maximum heat transfer rate when
the entire fin is at Tb

=
Q̇b

hPLθb

7



If the fin has a constant cross section then

η =
tanh(mL)

mL

An alternative figure of merit is the fin effectiveness given as

εfin =
total fin heat transfer

the heat transfer that would have
occurred through the base area

in the absence of the fin

=
Q̇b

hAcθb

Transient Heat Conduction

Performing a 1st law energy balance on a plane wall gives

Ėin − Ėout ⇒ Q̇cond =
TH − Ts

L/(k · A)
= Q̇conv =

Ts − T∞

1/(h · A)

where

TH − Ts

Ts − T∞
=

L/(k · A)

1/(h · A)
=

internal resistance to H.T.

external resistance to H.T.

=
hL

k
= Bi ≡ Biot number

Rint << Rext: the Biot number is small and we can conclude

TH − Ts << Ts − T∞ and in the limit TH ≈ Ts

8



Rext << Rint:

Rint << Rext: the Biot number is large and we can conclude

Ts − T∞ << TH − Ts and in the limit Ts ≈ T∞

Lumped System Analysis
• if the internal temperature of a body remains relatively constant with respect to position

– can be treated as a lumped system analysis

– heat transfer is a function of time only, T = T (t)

• internal temperature is relatively constant at low Biot number

• typical criteria for lumped system analysis → Bi ≤ 0.1

Transient Conduction Analysis

For the 3-D body of volume V and surface area A, we can use a lumped system analysis if

Bi =
hV

kA
< 0.1 ⇐ results in an error of less that 5%

The characteristic length for the 3-D object is given as L = V/A. Other characteristic lengths for
conventional bodies include:

9



Slab
V

As

=
WH2L

2WH
= L

Rod
V

As

=
πr2

oL

2πr0L
=

r0

2

Sphere
V

As

=
4/3πr3

o

4πr2
0

=
r0

3

For an incompressible substance we can write

mC︸ ︷︷ ︸
≡Cth

dT

dt
= − Ah︸︷︷︸

1/Rth

(T − T∞)

where

Cth = lumped thermal capacitance

It should be clearly noted that we have neglected the spatial dependence of the temperature within

the object. This type of an approach is only valid for Bi =
hV

kA
< 0.1

We can integrate and apply the initial condition, T = Ti @t = 0 to obtain

T (t) − T∞

Ti − T∞
= e−t/(Rth·Cth) = e−t/τ

10



where

τ = Rth · Cth = thermal time constant =
mC

Ah

The total heat transfer rate can be determined by integrating Q̇ with respect to time.

Q̇total = hA(Ti − T∞)(τ )[1 − e−t∗/τ ]

Therefore

Q̇total = ṁC(Ti − T∞)[1 − e−t∗/τ ]

11



Heisler Charts

The lumped system analysis can be used if Bi = hL/k < 0.1 but what if Bi > 0.1

• need to solve the partial differential equation for temperature

• leads to an infinite series solution ⇒ difficult to obtain a solution

The solution procedure for temperature is a function of several parameters

T (x, t) = f(x, L, t, k, α, h, Ti, T∞)

By using dimensionless groups, we can reduce the temperature dependence to 3 dimensionless
parameters

Dimensionless Group Formulation

temperature θ(x, t) =
T (x, t) − T∞

Ti − T∞

position x = x/L

heat transfer Bi = hL/k Biot number

time Fo = αt/L2 Fourier number

note: Cengel uses τ instead of Fo.

Now we can write

θ(x, t) = f(x, Bi, Fo)

The characteristic length for the Biot number is

slab L = L
cylinder L = ro

sphere L = ro

contrast this versus the characteristic length for the lumped system analysis.

With this, two approaches are possible

12



1. use the first term of the infinite series solution. This method is only valid for Fo > 0.2

2. use the Heisler charts for each geometry as shown in Figs. 18-13, 18-14 and 18-15

First term solution: Fo > 0.2 → error about 2% max.

Plane Wall: θwall(x, t) =
T (x, t) − T∞

Ti − T∞
= A1e

−λ2
1F o cos(λ1x/L)

Cylinder: θcyl(r, t) =
T (r, t) − T∞

Ti − T∞
= A1e

−λ2
1F o J0(λ1r/ro)

Sphere: θsph(r, t) =
T (r, t) − T∞

Ti − T∞
= A1e

−λ2
1F o

sin(λ1r/ro)

λ1r/ro

where λ1, A1 can be determined from Table 18-1 based on the calculated value of the Biot number
(will likely require some interpolation).

Heisler Charts

• find T0 at the center for a given time

• find T at other locations at the same time

• find Qtot up to time t
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Convection Heat Transfer

Reading Problems
19-1 → 19-8 19-15, 19-24, 19-35, 19-47, 19-53, 19-69, 19-77
20-1 → 20-6 20-21, 20-28, 20-44, 20-57, 20-79

Introduction

• in convective heat transfer, the bulk fluid motion of the fluid plays a major role in the over-
all energy transfer process. Therefore, knowledge of the velocity distribution near a solid
surface is essential.

• the controlling equation for convection is Newton’s Law of Cooling

Q̇conv =
ΔT

Rconv

= hA(Tw − T∞) ⇒ Rconv =
1

hA

where

A = total convective area, m2

1



h = heat transfer coefficient, W/(m2 · K)

Tw = surface temperature, ◦C

T∞ = fluid temperature, ◦C

External Flow: the flow engulfs the body with which it interacts thermally

Internal Flow: the heat transfer surface surrounds and guides the convective stream

Forced Convection: flow is induced by an external source such as a pump, compressor, fan, etc.

Natural Convection: flow is induced by natural means without the assistance of an external
mechanism. The flow is initiated by a change in the density of fluids incurred as a result
of heating.

Mixed Convection: combined forced and natural convection

Process h [W/(m2 · K)]

Natural
Convection

• gases 3 - 20

• water 60 - 900

Forced
Convection

• gases 30 - 300

• oils 60 - 1 800

• water 100 - 1 500

Boiling

• water 3 000 - 100 000

Condensation

• steam 3 000 - 100 000

2



Dimensionless Groups
Prandtl number: Pr = ν/α where 0 < Pr < ∞ (Pr → 0 for liquid metals and Pr →

∞ for viscous oils). A measure of ratio between the diffusion of momentum to the diffusion
of heat.

Reynolds number: Re = ρUL/μ ≡ UL/ν (forced convection). A measure of the balance
between the inertial forces and the viscous forces.

Peclet number: Pe = UL/α ≡ RePr

Grashof number: Gr = gβ(Tw − Tf)L3/ν2 (natural convection)

Rayleigh number: Ra = gβ(Tw − Tf)L3/(α · ν) ≡ GrPr

Nusselt number: Nu = hL/kf This can be considered as the dimensionless heat transfer
coefficient.

Stanton number: St = h/(UρCp) ≡ Nu/(RePr)

Forced Convection

The simplest forced convection configuration to consider is the flow of mass and heat near a flat
plate as shown below.

• as Reynolds number increases the flow has a tendency to become more chaotic resulting in
disordered motion known as turbulent flow

– transition from laminar to turbulent is called the critical Reynolds number, Recr

Recr =
U∞xcr

ν

– for flow over a flat plate Recr ≈ 500, 000
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– for engineering calculations, the transition region is usually neglected, so that the tran-
sition from laminar to turbulent flow occurs at a critical location from the leading edge,
xcr

Boundary Layers

Velocity Boundary Layer

• the region of fluid flow over the plate where viscous effects dominate is called the velocity
or hydrodynamic boundary layer

• the velocity of the fluid progressively increases away from the wall until we reach approx-
imately 0.99 U∞ which is denoted as the δ, the velocity boundary layer thickness. Note:
99% is an arbitrarily selected value.

Thermal Boundary Layer

• the thermal boundary layer is arbitrarily selected as the locus of points where

T − Tw

T∞ − Tw

= 0.99

Heat Transfer Coefficient

The local heat transfer coefficient can be written as

h =

−kf

(
∂T

∂y

)
y=0

(Tw − T∞)
≡ h(x) = hx
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The average heat transfer coefficient is determined using the mean value theorem such that

hav =
1

L

∫ L

0
h(x) dx

The Nusselt number is a measure of the dimensionless heat transfer coefficient given as

Nu = f(Re, Pr)

While the Nusselt number can be determine analytically through the conservations equations for
mass, momentum and energy, it is beyond the scope of this course. Instead we will use empirical
correlations based on experimental data where

Nux = C2 · Rem · Prn

Flow Over Plates

1. Laminar Boundary Layer Flow, Isothermal (UWT)

The local value of the Nusselt number is given as

Nux = 0.332 Re1/2
x Pr1/3 ⇒ local, laminar, UWT, Pr ≥ 0.6

where x is the distance from the leading edge of the plate.
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NuL =
hLL

kf

= 0.664 Re
1/2
L Pr1/3 ⇒ average, laminar, UWT, Pr ≥ 0.6

For low Prandtl numbers, i.e. liquid metals

Nux = 0.565 Re1/2
x Pr1/2 ⇒ local, laminar, UWT, Pr ≤ 0.6

2. Turbulent Boundary Layer Flow, Isothermal (UWT)

Nux = 0.0296 Re0.8
x Pr1/3 ⇒

local, turbulent, UWT,
0.6 < Pr < 100, Rex > 500, 000

NuL = 0.037 Re0.8
L Pr1/3 ⇒

average, turbulent, UWT,

0.6 < Pr < 100, Rex > 500, 000

3. Combined Laminar and Turbulent Boundary Layer Flow, Isothermal (UWT)

NuL =
hLL

k
= (0.037 Re0.8

L − 871) Pr1/3 ⇒
average, turbulent, UWT,

0.6 < Pr < 60, ReL > 500, 000

4. Laminar Boundary Layer Flow, Isoflux (UWF)

Nux = 0.453 Re1/2
x Pr1/3 ⇒ local, laminar, UWF, Pr ≥ 0.6

5. Turbulent Boundary Layer Flow, Isoflux (UWF)

Nux = 0.0308 Re4/5
x Pr1/3 ⇒ local, turbulent, UWF, Pr ≥ 0.6
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Flow Over Cylinders and Spheres

1. Boundary Layer Flow Over Circular Cylinders, Isothermal (UWT)

The Churchill-Berstein (1977) correlation for the average Nusselt number for long (L/D > 100)
cylinders is

NuD = S∗
D + f(Pr) Re

1/2
D

⎡
⎣1 +

(
ReD

282000

)5/8
⎤
⎦4/5

⇒
average, UWT, Re < 107

0 ≤ Pr ≤ ∞, Re · Pr > 0.2

where S∗
D = 0.3 is the diffusive term associated with ReD → 0 and the Prandtl number function

is

f(Pr) =
0.62 Pr1/3

[1 + (0.4/Pr)2/3]1/4

All fluid properties are evaluated at Tf = (Tw + T∞)/2.

2. Boundary Layer Flow Over Non-Circular Cylinders, Isothermal (UWT)

The empirical formulations of Zhukauskas and Jakob are commonly used, where

NuD ≈ hD

k
= C Rem

D Pr1/3 ⇒ see Table 19-2 for conditions

3. Boundary Layer Flow Over a Sphere, Isothermal (UWT)

For flow over an isothermal sphere of diameter D

NuD = S∗
D +

[
0.4 Re

1/2
D + 0.06 Re

2/3
D

]
Pr0.4

(
μ∞

μw

)1/4

⇒

average, UWT,

0.7 ≤ Pr ≤ 380

3.5 < ReD < 80, 000

where the diffusive term at ReD → 0 is S∗
D = 2

and the dynamic viscosity of the fluid in the bulk flow, μ∞ is based on T∞ and the dynamic
viscosity of the fluid at the surface, μw, is based on Tw. All other properties are based on T∞.
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Internal Flow

Lets consider fluid flow in a duct bounded by a wall that is at a different temperature than the fluid.
For simplicity we will examine a round tube of diameter D as shown below

The velocity profile across the tube changes from U = 0 at the wall to a maximum value along the
center line. The average velocity, obtained by integrating this velocity profile, is called the mean
velocity and is given as

Um =
1

Ac

∫
Ac

u dA =
ṁ

ρmAc

where the area of the tube is given as Ac = πD2/4 and the fluid density, ρm is evaluated at Tm.

The Reynolds number is given as

ReD =
UmD

ν

For flow in a tube:

ReD < 2300 laminar flow

2300 < ReD < 4000 transition to turbulent flow

ReD > 4000 turbulent flow
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Hydrodynamic (Velocity) Boundary Layer

• the hydrodynamic boundary layer thickness can be approximated as

δ(x) ≈ 5x

(
Umx

ν

)−1/2

=
5x√
Rex
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Thermal Boundary Layer

• the thermal entry length can be approximated as

Lt ≈ 0.05ReDPrD (laminar flow)

• for turbulent flow Lh ≈ Lt ≈ 10D

1. Laminar Flow in Circular Tubes, Isothermal (UWT) and Isoflux (UWF)

For laminar flow where ReD ≤ 2300

NuD = 3.66 ⇒ fully developed, laminar, UWT, L > Lt & Lh

NuD = 4.36 ⇒ fully developed, laminar, UWF, L > Lt & Lh

NuD = 1.86

(
ReDPrD

L

)1/3 (
μb

μw

)0.4

⇒

developing laminar flow, UWT,

Pr > 0.5

L < Lh or L < Lt

For non-circular tubes the hydraulic diameter, Dh = 4Ac/P can be used in conjunction with
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Table 10-4 to determine the Reynolds number and in turn the Nusselt number.

In all cases the fluid properties are evaluated at the mean fluid temperature given as

Tmean =
1

2
(Tm,in + Tm,out)

except for μw which is evaluated at the wall temperature, Tw.

2. Turbulent Flow in Circular Tubes, Isothermal (UWT) and Isoflux (UWF)

For turbulent flow where ReD ≥ 2300 the Dittus-Bouler equation (Eq. 19-79) can be used

NuD = 0.023 Re0.8
D Prn ⇒

turbulent flow, UWT or UWF,
0.7 ≤ Pr ≤ 160

ReD > 2, 300

n = 0.4 heating

n = 0.3 cooling

For non-circular tubes, again we can use the hydraulic diameter, Dh = 4Ac/P to determine both
the Reynolds and the Nusselt numbers.

In all cases the fluid properties are evaluated at the mean fluid temperature given as

Tmean =
1

2
(Tm,in + Tm,out)
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Natural Convection

What Drives Natural Convection?

• a lighter fluid will flow upward and a cooler fluid will flow downward

• as the fluid sweeps the wall, heat transfer will occur in a similar manner to boundary layer
flow however in this case the bulk fluid is stationary as opposed to moving at a constant
velocity in the case of forced convection

We do not have a Reynolds number but we have an analogous dimensionless group called the
Grashof number

Gr =
buouancy force

viscous force
=

gβ(Tw − T∞)L3

ν2

where

g = gravitational acceleration, m/s2

β = volumetric expansion coefficient, β ≡ 1/T (T is ambient temp. in K)
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Tw = wall temperature, K

T∞ = ambient temperature, K

L = characteristic length, m

ν = kinematic viscosity, m2/s

The volumetric expansion coefficient, β, is used to express the variation of density of the fluid with
respect to temperature and is given as

β = −1

ρ

(
∂ρ

∂T

)
P

Natural Convection Heat Transfer Correlations

The general form of the Nusselt number for natural convection is as follows:

Nu = f(Gr, Pr) ≡ CRamPrn where Ra = Gr · Pr

• C depends on geometry, orientation, type of flow, boundary conditions and choice of char-
acteristic length.

• m depends on type of flow (laminar or turbulent)

• n depends on the type of fluid and type of flow

1. Laminar Flow Over a Vertical Plate, Isothermal (UWT)

The general form of the Nusselt number is given as

NuL =
hL
kf

= C

⎛
⎜⎜⎜⎝gβ(Tw − T∞)L3

ν2︸ ︷︷ ︸
≡Gr

⎞
⎟⎟⎟⎠

1/4 ⎛
⎜⎜⎜⎝ ν

α︸︷︷︸
≡P r

⎞
⎟⎟⎟⎠

1/4

= C Gr
1/4
L Pr1/4︸ ︷︷ ︸
Ra1/4

where

RaL = GrLPr =
gβ(Tw − T∞)L3

αν
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2. Laminar Flow Over a Long Horizontal Circular Cylinder, Isothermal (UWT)

The general boundary layer correlation is

NuD =
hD

kf

= C

⎛
⎜⎜⎜⎝gβ(Tw − T∞)D3

ν2︸ ︷︷ ︸
≡Gr

⎞
⎟⎟⎟⎠

n ⎛
⎜⎜⎜⎝ ν

α︸︷︷︸
≡P r

⎞
⎟⎟⎟⎠

n

= C Grn
D Prn︸ ︷︷ ︸
Ran

D

where

RaD = GrDPr =
gβ(Tw − T∞)D3

αν

All fluid properties are evaluated at the film temperature, Tf = (Tw + T∞)/2.
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Natural Convection From Plate Fin Heat Sinks

Plate fin heat sinks are often used in natural convection to increase the heat transfer surface area
and in turn reduce the boundary layer resistance

R ↓=
1

hA ↑

For a given baseplate area, W × L, two factors must be considered in the selection of the number
of fins

• more fins results in added surface area and reduced boundary layer resistance,

R ↓=
1

hA ↑
• more fins results in a decrease fin spacing, S and in turn a decrease in the heat transfer

coefficient

R ↑=
1

h ↓ A

A basic optimization of the fin spacing can be obtained as follows:

Q̇ = hA(Tw − T∞)
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where the fins are assumed to be isothermal and the surface area is 2nHL, with the area of the fin
edges ignored.

For isothermal fins with t < S

Sopt = 2.714

(
L

Ra1/4

)

with

Ra =
gβ(Tw − T∞L3)

ν2
Pr

The corresponding value of the heat transfer coefficient is

h = 1.31k/Sopt

All fluid properties are evaluated at the film temperature.
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Radiation Heat Transfer

Reading Problems
21-1 → 21-6 21-21, 21-24, 21-41, 21-61, 21-69
22-1 → 21-5 22-11, 22-17, 22-26, 22-36, 22-71, 22-72

Introduction

It should be readily apparent that radiation heat transfer calculations required several additional
considerations in addition to those of conduction and convection, i.e.

• optical aspects: the manner in which an emitting body “sees” its neighbors

• surface conditions

Blackbody Radiation

A blackbody is an ideal radiator that

• absorbs all incident radiation regardless of wavelength and direction
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• at a given temperature and wavelength, no surface can emit more energy than a blackbody

• emitted radiation is a function of wavelength and temperature but is independent of direction,
i.e. a black body is a diffuse emitter (independent of direction)

Definitions
1. Blackbody emissive power: the radiation emitted by a blackbody per unit time and per

unit surface area

Eb = σ T 4 [W/m2] ⇐ Stefan-Boltzmann law

where σ = Stefan-Boltzmann constant = 5.67×10−8 W/(m2·K4) and the temperature
T is given in K.

2. Spectral blackbody emissive power: the amount of radiation energy emitted by a black-
body per unit surface area and per unit wavelength about the wavelength λ. The following
relationship between emissive power, temperature and wavelength is known as Plank’s dis-
tribution law

Eb,λ =
C1

λ5[exp(C2/λT ) − 1]
[W/(m2 · μm)]

where

C0 = 2.998 × 108 [m/s] (vacuum conditions)

C1 = 2πhC2
0 = 3.743 × 108 [W · μm4/m2]

C2 = hC0/K = 1.439 × 104 [μ · K]

K = Boltzmann constant ≡ 1.3805 × 10−23 [J/K]

h = Plank′s constant ≡ 6.63 × 10−34 [J · s]

Eb,λ = energy of radiation in the wavelength

band dλ per unit area and time

If we integrate the spectral emissive power between dλ = λ2 − λ1 we will obtain the
blackbody emissive power given as Eb(T ) = σT 4.
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3. Blackbody radiation function: the fraction of radiation emitted from a blackbody at tem-
perature, T in the wavelength band λ = 0 → λ

f0→λ =

∫ λ

0
Eb,λ(T ) dλ∫ ∞

0
Eb,λ(T ) dλ

=

∫ λ

0

C1

λ5[exp(C2/λT ) − 1]
dλ

σT 4

let t = λT and dt = T dλ, then

f0→λ =

∫ λ

0

C1T
5(1/T )dt

t5[exp(C2/t) − 1]

σT 4

=
C1

σ

∫ λT

0

dt

t5[exp(C2/t) − 1]

= f(λT )

f0→λ is tabulated as a function λT in Table 21.2

We can easily find the fraction of radiation emitted by a blackbody at temperature T over a
discrete wavelength band as

fλ1→λ2 = f(λ2T ) − f(λ1T )

fλ→∞ = 1 − f0→λ
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Radiation Properties of Real Surfaces

The thermal radiation emitted by a real surface is a function of surface temperature, T , wavelength,
λ, direction and surface properties.

Eλ = f(T, λ, direction, surface properties) ⇒ spectral emissive power

while for a blackbody, the radiation was only a function of temperature and wavelength

Eb,λ = f(T, λ) → diffuse emitter ⇒ independent of direction

Definitions
1. Emissivity: defined as the ratio of radiation emitted by a surface to the radiation emitted by

a blackbody at the same surface temperature.

ε(T ) =
radiation emitted by surface at temperature T

radiation emitted by a black surface at T

=

∫ ∞

0
Eλ(T ) dλ∫ ∞

0
Ebλ(T ) dλ

=

∫ ∞

0
ελ(T )Ebλ(T ) dλ

Eb(T )
=

E(T )

σT 4

where ε changes rather quickly with surface temperature.

2. Diffuse surface: properties are independent of direction.
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3. Gray surface: properties are independent of wavelength.

4. Irradiation, G: the radiation energy incident on a surface per unit area and per unit time

An energy balance based on incident radiation gives

G = ρG + αG + τG

where

G = incident radiation or irradiation, W/m2

ρG = reflected radiation, W/m2

αG = absorbed radiation, W/m2

τG = transmitted radiation, W/m2

with the associated surface properties being

ρ = reflectivity
α = absorptivity
τ = transmissivity

⎫⎪⎬
⎪⎭ ⇒ function of λ & T of the incident radiation G

ε = emissivity ⇒ function of λ & T of the emitting surface

If we normalize with respect to the total irradiation

α + ρ + τ = 1

In general ε �= α. However, for a diffuse-gray surface (properties are independent of wave-
length and direction)

ε = α diffuse-gray surface

5



These unsubscripted values of α, ρ and τ represent the average properties, i.e. due to
incident radiation energy from all directions over a hemispherical space and including all
wavelengths.

We can just as easily define these properties for a specific wavelength, such that

Gλ = ρλGλ + αλGλ + τλGλ

where

ρλ = spectral reflectivity = f(λ, T )

αλ = spectral absorptivity = f(λ, T )

τλ = spectral transmissivity = f(λ, T )

and

ρλ + αλ + τλ = 1

ελ depends strongly on the temperature of the emitting surface but not at all on the irradiation
field Gλ.

5. Radiosity, J : the total radiation energy leaving a surface per unit area and per unit time.

For a surface that is gray and opaque, i.e. ε = α and α + ρ = 1, the radiosity is given as

J = radiation emitted by the surface + radiation reflected by the surface

= ε Eb + ρG

= εσT 4 + ρG

Since ρ = 0 for a blackbody, the radiosity of a blackbody is

J = σT 4

Diffuse-Gray Surfaces, ε = α

Conditions for ε = α

• in many radiation problems, the calculations are greatly simplified when ε = α, which
defines a gray surface. Here, we seek the necessary conditions for ε = α. This is a 3-step
procedure.
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• the first step involves adopting Kirchhoff’s law which is stated here without proof:

ε(λ, T, φ, θ) = α(λ, T, φ, θ)

This equation is always applicable because both ε(λ, T, φ, θ) and α(λ, T, φ, θ) are inher-
ent surface properties

• the second step involves finding the requirements for ε(λ, T ) = α(λ, T ). This is done
using the definitions hemispherical radiation, as given below:

ε(λ, T ) =

∫ 2π

0

∫ π/2

0
ελ,θ cos θ sin θdθdφ∫ 2π

0

∫ π/2

0
cos θ sin θdθdφ

α(λ, T ) =

∫ 2π

0

∫ π/2

0
αλ,θIλ cos θ sin θdθdφ∫ 2π

0

∫ π/2

0
Iλ cos θ sin θdθdφ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒ ??? ε(λ, T ) = α(λ, T )

From this, we can see that for ε(λ, T ) = α(λ, T ), we must have either a diffuse surface or
a diffuse irradiation. As indicated before, in most engineering calculations, we use direction
averaged properties which amounts to the assumption of a diffuse surface.

• having adopted ε(λ, T, φ, θ) = α(λ, T, φ, θ) and ε(λ, T ) = α(λ, T ), the third step
involves finding the requirements for ε = α; that is:

ε(T ) =

∫ ∞

0
ελEλ,b dλ∫ ∞

0
Eλ,b dλ

=? =

∫ ∞

0
αλGλdλ∫ ∞

0
Gλdλ

= α(T )

From this, we can see that for ε(T ) = α(T ), we must have either Gλ = Eλ,b which means
that the irradiation originated from a blackbody or ε(λ, T ) = constant and α(λ, T ) =
constant. To see the last point, remember that if ε(λ, T ) = constant then ε(T ) =
ε(λ, T ) and similarly α(T ) = α(λ, T ). But at step two, we have already established that
ε(λ, T ) = α(λ, T ), hence it follows that ε(T ) = α(T ).

• by definition, a gray surface is one for which ε(λ, T ) and α(λ, T ) are independent of λ

over the dominant spectral regions of Gλ and Eλ.
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View Factor (Shape Factor, Configuration Factor)

• Definition: The view factor, Fi→j is defined as the fraction of radiation leaving surface i
which is intercepted by surface j. Hence

Fi→j =
Q̇i→j

AiJi

=
radiation reaching j

radiation leaving i

AiFi→j = AjFj→i

This is called the reciprocity relation.

• consider an enclosure with N surfaces

N∑
j=1

Fi→j = 1 ; i = 1, 2, . . . , N

This is called the summation rule.

Note that Fi→i �= 0 for a concave surface. For a plane or convex surface Fi→i = 0.

Hottel Crossed String Method

Can be applied to 2D problems where surfaces are any shape, flat, concave or convex. Note for a
2D surface the area, A is given as a length times a unit width.

A1F12 = A2F12 =
(total crossed) − (total uncrossed)

2
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A1 and A2 do not have to be parallel

A1F12 = A2F21 =
1

2
[(ac + bd)︸ ︷︷ ︸

crossed

− (bc + ad)︸ ︷︷ ︸
uncrossed

]

Radiation Exchange Between Diffuse-Gray Surfaces
Forming an Enclosure

• an energy balance on the i′th surface gives:

Q̇i = q̇iAi = Ai(Ji − Gi)

Q̇i =
Eb,i − Ji(
1 − εi

εiAi

) ≡ potential difference

surface resistance
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• next consider radiative exchange between the surfaces.

By inspection it is clearly seen that

{
irradiation on

surface i

}
=

{
radiation leaving the
remaining surfaces

}

AiGi =
N∑

j=1

Fj→i(AjJj) =
N∑

j=1

AiFi→jJj

Q̇i =
N∑

j=1

Ji − Jj(
1

AiFi→j

) ≡ potential difference

configuration resistance
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Special Diffuse, gray, two-surface enclosures

Large (infinite) Parallel Plates
A1 = A2 = A

F1→2 = 1
Q̇12 =

Aσ(T 4
1 − T 4

2 )

1

ε1

+
1

ε2

− 1

Long (infinite) Concentric Cylinders

A1

A2

=
r1

r2

F1→2 = 1

Q̇12 =
Aσ(T 4

1 − T 4
2 )

1

ε1

+
1 − ε2

ε2

(
r1

r2

)

Concentric Spheres

A1

A2

=
r2
1

r2
2

F1→2 = 1

Q̇12 =
Aσ(T 4

1 − T 4
2 )

1

ε1

+
1 − ε2

ε2

(
r1

r2

)2

Small Convex Object in a Large Cavity

A1

A2

= 0

F1→2 = 1

Q̇12 = σA1ε1(T
4
1 − T 4

2 )
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Cooling of Electronic Equipment

Reading Problems

Introduction

Why should we worry about the thermal behavior of electronic equipment?

• a standard Intel Pentium 4 chip is:

– 10.4 mm × 10.4 mm

– contains millions of electronic components

– dissipates approximately 75 watts of power

– is restricted to a maximum temperature of 85 ◦C

This does not seem like a big deal. A 100 W light bulb dissipates more power than this.

• the heat flux at the surface on a chip is exceedingly high
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• this is primarily because of the miniaturization of electronic devices in order to maximize
signal processing speed

• if we track the evolution of Intel processors over the course of the past several decades we
see a pattern which is expected to continue for the next several years

• the following figure puts the magnitude of this heat flux into perspective

• the problem is further compounded by the fact that a maximum operating temperature of
approximately 85 − 100 ◦C is necessary in order to ensure long term reliable operation

• failure rate increases dramatically as operating temperatures rise above 100 ◦C
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• electronic cooling presents a significant challenge to design engineers

• is the problem expected to get better anytime soon? not likely. By 2007, Intel expects to have
1 billion transistors/chip! with power dissipation of more that 100 W and heat fluxes of
order 1000 W/m2.

Therefore we must deal with the problem with engineering solutions that necessitate a good un-
derstanding of all forms of heat transfer.
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