Introduction to Thermodynamics and Heat Transfer (ECE 309) Suggested Problems for Chapter 1

1. Both a gage and a manometer are attached to a gas tank to measure its pressure. If the reading on the pressure gage is 80 kPa , determine the distance between the two fluid levels of the manometer if the fluid is (a) mercury $\left(\rho=13,600 \mathrm{~kg} / \mathrm{m}^{3}\right)$ or (b) water $\left(\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\right)$.

2. The pressure in a pressurized water tank is measured by a multi-manometer as shown in the figure. Determine the gage pressure of air in the tank.

3. Balloons are often filled with helium gas because it weighs only about one-seventh of what air weighs under identical conditions. The buoyancy force which can be expressed as $\mathrm{F}_{\mathrm{B}}=$ $\rho_{\text {air }} g V_{\text {balloon }}$ will push the balloon upward. If the balloon has a diameter of 10 m and carries two people, 70 kg each, determine the acceleration of the balloon when it is first released. Assume the density of air is $\rho=1.16 \mathrm{~kg} / \mathrm{m}^{3}$, and neglect the weight of the ropes and the cage. (Answer: $16.5 \mathrm{~m} / \mathrm{s}^{2}$)

4. Determine the maximum amount of load, in kg, the balloon described in Prob. 2 can carry. (Answer: 520.6 kg).
5. The lower half of a $10-\mathrm{m}$-high cylindrical container is filled with water ($\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$) and the upper half with oil that has a specific gravity of 0.85 . Determine the pressure difference between the top and bottom of the cylinder. (Answer: 90.7 kPa)

