Problem: 6-4

Given: A four-stroke Otto-cycle has a crankshaft speed of 2000 rpm, a compression ratio of 8 , and a displacement volume of 1.5 liters. At the start of compression the air is at $293 \mathrm{~K}, 0.1013 \mathrm{MPa}$. The peak cycle temperature is equal to the 2000 K source temperature.
The compression and expansion processes are each reversible and adiabatic.

Find: i) the energy transfer per unit mass for each process in the cycle
Assume: constant specific heats

The analysis begins with a process representation and evaluation of properties. The given data are shown in the following table:

State	\boldsymbol{T}	\boldsymbol{P}	\boldsymbol{v}
(\boldsymbol{K})	$(\boldsymbol{M P \boldsymbol { P a })}$	$\left(\boldsymbol{m}^{\mathbf{3}} / \boldsymbol{k g}\right)$	
1	293	0.1013	
2			
3	2000		
4			

An entropy balance for the reversible, adiabatic compression process gives $s_{2}-s_{1}$. The compression ratio gives $v_{1} / v_{2}=8.0$. The value of T_{2} may be found by integrating

$$
T d s=d u+P d v
$$

for the isentropic process from state (1) to state (2) to obtain

$$
\frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{k-1}
$$

Upon multiplying by T_{1} and substituting numerical values

$$
T_{2}=293 \times 8.0^{(1.4-1)}=673.1 \mathrm{~K}
$$

The pressure after compression may be found from the ideal gas equation as

$$
P_{2}=m_{2} R T_{2} / V_{2}
$$

Since $m_{2}=m_{1}=\left(P_{1} V_{1}\right) /\left(R T_{1}\right)$ we may write

$$
\begin{aligned}
P_{2} & =\left[\left(P_{1} V_{1}\right) /\left(R T_{1}\right)\right]\left[R T_{2} / V_{2}\right] \\
& =P_{1}\left(V_{1} / V_{2}\right)\left(T_{2} / T_{1}\right) \\
& =0.1013 \times 8.0 \times(673.1 / 293) \\
& =1.862 \mathrm{MPa}
\end{aligned}
$$

The specific volume at state (1) may be computed from the ideal gas equation as

$$
\begin{aligned}
v_{1} & =R T_{1} / P_{1} \\
& =\frac{287 \frac{N-m}{k g-K} \times 293 \mathrm{~K}}{\left(0.1013 M P a \times 10^{6}\left(N / M P a-m^{2}\right)\right)} \\
& =0.8304 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

The specific volume at state (2) is obtained from v_{1} and the compression ratio as

$$
v_{2}=v_{1} /\left(v_{1} / v_{2}\right)=0.8304 / 8.0=0.1038\left(\mathrm{~m}^{3} / \mathrm{kg}\right)
$$

The pressure at state (3) may be found from the ideal gas equation as

$$
P_{3}=m_{3} R T_{3} / V_{3}
$$

Since $m_{3}=m_{1}=\left(P_{1} V_{1}\right) /\left(R T_{1}\right)$ and $V_{3}=V_{2}$, we may then write P_{3} as

$$
\begin{aligned}
P_{3} & =\left[\left(P_{1} V_{1}\right) /\left(R T_{1}\right)\right]\left[R T_{3} / V_{2}\right] \\
& =P_{1}\left(V_{1} / V_{2}\right)\left(T_{3} / T_{1}\right) \\
& =0.1013 \times 8.0 \times(2000 / 293) \\
& =5.532 \mathrm{MPa}
\end{aligned}
$$

State (4) is fixed by $s_{4}=s_{3}$ and $v_{4}=v_{1}$. The value of T_{4} can be found by integrating $T d s=d u+P d V$ for the isentropic process from state (3) to state (4) to obtain

$$
\frac{T_{4}}{T_{3}}=\left(\frac{v_{4}}{v_{3}}\right)^{1-k}
$$

Since $v_{4} / v_{3}=v_{1} / v_{2}=8.0$ and $T_{3}=T_{H}=2000 K$, we may multiply by T_{3} and substitute values to find

$$
T_{4}=2000 \times 8.0^{(1-1.4)}=870.6 \mathrm{~K}
$$

The pressure at state (4) is given by

$$
P_{4}=m_{4} R T_{4} / V_{4}
$$

Since $m_{4}=m_{1}$ and $V_{4}=V_{1}=m_{1} R T_{1} / P_{1}$ we may write P_{4} as

$$
P_{4}=\left(T_{4} / T_{1}\right) P_{1}=(870.6 / 293) \times 0.1013=0.3010 M P a
$$

The table of property values may now be completed.

State	\boldsymbol{T} (\boldsymbol{K})	\boldsymbol{P} $(\boldsymbol{M P a})$	\boldsymbol{v} $\left(\boldsymbol{m}^{\mathbf{3}} / \boldsymbol{k g}\right)$
1	293	0.1013	0.8304
2	673.1	1.862	0.1038
3	2000	5.532	0.1038
4	870.6	0.3010	0.8304

For constant c_{v}, internal energy differences may be obtained by integrating $d u=c_{v} d T$. The energy transfer per unit mass may then be found as

$$
\begin{aligned}
& \Delta W_{c} / m=c_{v}\left(T_{2}-T_{1}\right)=0.7176(673.1-293)=272.8 \mathrm{~kJ} / \mathrm{kg} \\
& \Delta Q_{H} / m=c_{v}\left(T_{3}-T_{2}\right)=0.7176(2000-673.1)=952.2 \mathrm{~kJ} / \mathrm{kg} \\
& \Delta W_{e} / m=c_{v}\left(T_{3}-T_{4}\right)=0.7176(2000-870.6)=810.5 \mathrm{~kJ} / \mathrm{kg} \\
& \Delta Q_{L} / m=c_{v}\left(T_{4}-T_{1}\right)=0.7176(870.6-293)=414.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

