ME354

Thermodynamics 2

Quiz \#1-T01:

Name:
ID \#:

Problem: A piston-cylinder device contains $\mathbf{0 . 1 5} \mathbf{~ k g}$ of air initially at 2 MPa and $350{ }^{\circ} \mathrm{C}$. The air is first expanded isothermally to 500 kPa , then compressed polytropically with a polytropic exponent of 1.2 to the initial pressure, and finally compressed at the constant pressure to the initial state. Determine the boundary work for each process and the net work of the cycle.

1. If air properties are calculated at $\mathbf{3 0 0} \boldsymbol{K}$, then from Table A-2a

$$
\begin{aligned}
R & =0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
k & =1.4
\end{aligned}
$$

2. If air properties are calculated at $\mathbf{3 5 0} \boldsymbol{K}$, then from Table A-2b

$$
\begin{aligned}
R & =c_{p}-c_{v}=1.008-0.721=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
k & =1.398
\end{aligned}
$$

Since there is very little difference, I will proceed with case 1.

Isothermal Expansion

$$
\begin{aligned}
& V_{1}=\frac{m R T}{P_{1}}=\frac{(0.15 \mathrm{~kg})(0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(350+273.15) \mathrm{K}}{2000 \mathrm{kPa} \times \frac{1 \mathrm{~kJ}}{1 \mathrm{kPa} \cdot \mathrm{~m}^{3}}=0.01341 \mathrm{~m}^{3}{ }^{1 \text { mark }}} \\
& V_{2}=\frac{m R T}{P_{2}}=\frac{(0.15 \mathrm{~kg})(0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(350+273.15) \mathrm{K}}{500 \mathrm{kPa} \times \frac{1 \mathrm{~kJ}}{1 \mathrm{kPa} \cdot \mathrm{~m}^{3}}}=0.05365 \mathrm{~m}^{3}{ }^{1 \text { mark }}
\end{aligned}
$$

The work for an isothermal process is given as

$$
\begin{aligned}
W_{1-2}=P_{1} V_{1} \ln \left(\frac{V_{2}}{V_{1}}\right) & =(2000 k P a)\left(0.01341 m^{3}\right)\left(\frac{1 k J}{1 k P a \cdot m^{3}}\right) \ln \left(\frac{0.05365}{0.01341}\right) \\
& =37.2 k J \Leftarrow
\end{aligned}
$$

Polytropic Compression

We know for a polytropic process that $\boldsymbol{P}^{\boldsymbol{n}}=\boldsymbol{c o n s t a n t}$, which for a constant mass also implies that $\boldsymbol{P} \boldsymbol{V}^{\boldsymbol{n}}=$ constant .

$$
P_{2} V_{2}^{n}=P_{3} V_{3}^{n} \longrightarrow(500 k P a)\left(0.05365 \mathrm{~m}^{3}\right)^{1.2}=(2000 k P a) V_{3}^{1.2}
$$

or

$$
1 \text { mark }
$$

$$
V_{3}=0.0169 m^{3}
$$

$$
\begin{array}{rlrl}
W_{2-3}=\frac{P_{3} V_{3}-P_{2} V_{2}}{1-n} & =\frac{(2000 k P a)\left(0.0169 m^{3}\right)-(500 k P a)\left(0.05364 m^{3}\right)}{1-1.2}\left(\frac{1 k J}{1 k P a \cdot m^{3}}\right) \\
& =-34.9 k J \Leftarrow & 2 \text { marks }
\end{array}
$$

Constant Pressure Compression

The work at constant pressure is known as $\boldsymbol{P d} \boldsymbol{d} \boldsymbol{V}$ work, therefore

$$
\begin{aligned}
& W_{3-1}=P_{3}\left(V_{1}-V_{3}\right)=(2000 k P a)\left(0.01341 m^{3}-0.0169 m^{3}\right)\left(\frac{1 k J}{1 k P a \cdot m^{3}}\right) \\
&=-6.98 k J \Leftarrow \\
& 2 \text { marks }
\end{aligned}
$$

Net Work

$$
W_{n e t}=W_{1-2}+W_{2-3}+W_{3-1}=37.2+(-34.9)+(-6.98)=-4.68 k J \Leftarrow \quad 1 \text { mark }
$$

