ME354

Thermodynamics 2

Quiz \#3 - T02:

Name:

ID \#:

Problem: A commercial refrigerator with refrigerant- $134 a$ as the working fluid is used to keep the refrigerated space at $-30^{\circ} \mathrm{C}$ by rejecting its waste heat to cooling water that enters the condenser at $18^{\circ} \mathrm{C}$ at a rate of $0.25 \mathrm{~kg} / \mathrm{s}$ and leaves at $\mathbf{2 6}{ }^{\circ} \mathrm{C}$. The refrigerant enters the condenser at $\mathbf{1 . 2 ~ M P a}$ and $65{ }^{\circ} \mathrm{C}$ and leaves at $42^{\circ} \mathrm{C}$. The inlet state of the compressor is $\mathbf{6 0} \mathbf{k P a}$ and $-34^{\circ} \mathrm{C}$ and the compressor is estimated to gain a net heat of $\mathbf{4 5 0} \boldsymbol{W}$ from the surroundings.

Determine:
(a) the quality of the refrigerant at the evaporator inlet,
(b) the refrigeration load, $[k W]$
(c) the COP of the refrigerator,

Assumptions

1. $S S-S F$
2. $K \boldsymbol{E}=P \boldsymbol{E} \rightarrow \mathbf{0}$
3. properties are constant

Part a)

state	\boldsymbol{T} $\left({ }^{\circ} \boldsymbol{C}\right)$	\boldsymbol{P} $(\boldsymbol{k P a})$	\boldsymbol{h} $(\boldsymbol{k J} / \boldsymbol{k g})$	\boldsymbol{s} $(\boldsymbol{k J} / \boldsymbol{k g} \cdot \boldsymbol{K})$	comment
1	-34	60	230.05		Table A-13
	1 mark				
65	1200	295.13			
4	42	1200	111.37		$\boldsymbol{h}_{\mathbf{4}}=\boldsymbol{h}_{\mathbf{3}}$
		60	111.37		

State 1

We first notice from Table A-12, our temperature at 1 is above the saturation temperature at $\mathbf{6 0} \boldsymbol{k P a}$, therefore state point 1 is in the superheated region. From Table A-13 at $\boldsymbol{P}_{\mathbf{1}}=\mathbf{0 . 0 6} \mathbf{M P a}$ we need to interpolate.

$$
h_{1}=0.826(227.79)+0.174(240.76)=230.05 \mathrm{~kJ} / \mathrm{kg}{ }^{1} \text { mark }
$$

State 3

We notice from Table A-12, our temperature at 3 is below the saturation temperature 1200 kPa , therefore state point 3 is in the sub cooled region. From Table A-11 we can determine
$h_{3}=h_{f}(T)+v_{f}(T)\left[P-P_{\text {sat }}(T)\right]=111.26+0.0008786(1200-1072.8)=111.37 \mathrm{~kJ} / \mathrm{kg}$
1 mark

State 4

State point 4 is under the dome with pressure and entropy known, therefore from Table A-12

$$
x_{4}=\frac{111.37-3.841}{227.79-3.841}=0.4802 \Leftarrow 1 \text { mark }
$$

Part b)

The mass flow rate of the refrigerant can be determined by applying a 1st law energy balance across the condenser.

The water properties can be obtained by using a saturated liquid at the given temperature

$$
\begin{aligned}
& h_{w 1}=h_{f @ 18}{ }^{\circ} \mathrm{C}=75.54 \mathrm{~kJ} / \mathrm{kg} \\
& h_{w 2}=h_{f @ 26}{ }^{\circ} \mathrm{C}=109.01 \mathrm{~kJ} / \mathrm{kg} \\
& \dot{m}_{R}\left(h_{2}-h_{3}\right)=\dot{m}_{w}\left(h_{w 2}-h_{w 1}\right) \\
& \dot{m}_{R}(295.13-111.37) k J / k g=(0.25 \mathrm{~kg} / \mathrm{s})(109.01-75.54) \mathrm{kJ} / \mathrm{kg} \\
& \dot{m}_{R}=0.0455 \mathrm{~kg} / \mathrm{s} \quad 2 \text { marks }
\end{aligned}
$$

The refrigeration load is given as

$$
\dot{Q}_{L}=\dot{m}_{R}\left(h_{1}-h_{4}\right)=(0.0455 \mathrm{~kg} / \mathrm{s})(230.03-111.37) \mathrm{kJ} / \mathrm{kg}=5.39 \mathrm{~kW} \Leftarrow 1 \text { mark }
$$

Note: Cengel calculates the refrigeration load as $\dot{Q}_{H}-\dot{\boldsymbol{W}}_{i n}$. This includes the $Q_{i n}$ of the compressor in addition to the enthalpy of the evaporator and provides a $\dot{Q}_{L}=5.85 \mathrm{~kW}$. While not technically the cooling load, I will accept this answer.

Part c)

The specific work into the compressor can be determined as

$$
\begin{aligned}
& w_{i n}=\left(h_{2}-h_{1}\right)-\frac{\dot{Q}_{i n}}{\dot{m}_{R}}=(295.13-230.03) \mathrm{kJ} / \mathrm{kg}-\frac{0.450 \mathrm{~kJ} / \mathrm{s}}{0.0455 \mathrm{~kg} / \mathrm{s}}=55.21 \mathrm{~kJ} / \mathrm{kg} \\
& \text { The COP is determined as }
\end{aligned}
$$

$$
C O P=\frac{\dot{q}_{L}}{\dot{w}_{i n}}=\frac{h_{1}-h_{4}}{w_{i n}}=\frac{(230.03-111.37) \mathrm{kJ} / \mathrm{kg}}{55.21 \mathrm{~kJ} / \mathrm{kg}}=2.14 \Leftarrow 1 \text { mark }
$$

Note: I have calculated $\boldsymbol{q}_{\boldsymbol{L}}$ as the actual heat gain across the evaporator. Cengel calculates $\boldsymbol{q}_{\boldsymbol{L}}=$ $q_{H}-w_{i n}$. Since $w_{i n}$ is biased by the heat gain at the compressor this leads to a $C O P=2.33$. I will accept this as a valid solution although, the $C O P$ should only be based on the actual energy gain which is $h_{1}-h_{4}$.

