<i>ME354</i> Thermodynamics 2	Name:	
Quiz #3 - T02:	ID #:	

Problem: A commercial refrigerator with refrigerant- 134a as the working fluid is used to keep the refrigerated space at $-30 \ ^{\circ}C$ by rejecting its waste heat to cooling water that enters the condenser at $18 \ ^{\circ}C$ at a rate of $0.25 \ kg/s$ and leaves at $26 \ ^{\circ}C$. The refrigerant enters the condenser at $1.2 \ MPa$ and $65 \ ^{\circ}C$ and leaves at $42 \ ^{\circ}C$. The inlet state of the compressor is $60 \ kPa$ and $-34 \ ^{\circ}C$ and the compressor is estimated to gain a net heat of $450 \ W$ from the surroundings.

Assumptions

- 1. SS SF
- 2. $KE = PE \rightarrow 0$
- 3. properties are constant

Part a)

	comment	s	h	Р	T	state
_		$(kJ/kg \cdot K)$	(kJ/kg)	(kPa)	$(^{\circ}C)$	
			230.05	60	-34	1
1 mark	Table A-13		295.13	1200	65	2
			111.37	1200	42	3
	$h_4 = h_3$		111.37	60		4

State 1

We first notice from Table A-12, our temperature at 1 is above the saturation temperature at 60 kPa, therefore state point 1 is in the superheated region. From Table A-13 at $P_1 = 0.06 MPa$ we need to interpolate.

 $h_1 = 0.826(227.79) + 0.174(240.76) = 230.05 \ kJ/kg$

State 3

We notice from Table A-12, our temperature at 3 is below the saturation temperature 1200 kPa, therefore state point 3 is in the sub cooled region. From Table A-11 we can determine

$$h_3 = h_f(T) + v_f(T)[P - P_{sat}(T)] = 111.26 + 0.0008786(1200 - 1072.8) = 111.37 \ kJ/kg$$

State 4

State point 4 is under the dome with pressure and entropy known, therefore from Table A-12

$$x_4 = rac{111.37 - 3.841}{227.79 - 3.841} = 0.4802 \Leftarrow 1 ext{ mark}$$

Part b)

The mass flow rate of the refrigerant can be determined by applying a 1st law energy balance across the condenser.

The water properties can be obtained by using a saturated liquid at the given temperature

$$h_{w1} = h_{f@18} \circ_C = 75.54 \ kJ/kg$$

 $h_{w2} = h_{f@26} \circ_C = 109.01 \ kJ/kg$

$$\dot{m}_R(h_2 - h_3) = \dot{m}_w(h_{w2} - h_{w1})$$

 $\dot{m}_R(295.13 - 111.37) kJ/kg = (0.25 kg/s)(109.01 - 75.54) kJ/kg$
 $\dot{m}_R = 0.0455 kg/s$

The refrigeration load is given as

$$\dot{Q}_L = \dot{m}_R(h_1 - h_4) = (0.0455 \ kg/s)(230.03 - 111.37) \ kJ/kg = 5.39 \ kW \Leftarrow 1000$$

1 mark

Note: Cengel calculates the refrigeration load as $\dot{Q}_H - \dot{W}_{in}$. This includes the Q_{in} of the compressor in addition to the enthalpy of the evaporator and provides a $\dot{Q}_L = 5.85 \ kW$. While not technically the cooling load, I will accept this answer.

Part c)

The specific work into the compressor can be determined as

$$w_{in} = (h_2 - h_1) - \frac{\dot{Q}_{in}}{\dot{m}_R} = (295.13 - 230.03) \, kJ/kg - \frac{0.450 \, kJ/s}{0.0455 \, kg/s} = \frac{55.21 \, kJ/kg}{1 \, \text{mark}}$$

The COP is determined as

$$COP = \frac{\dot{q}_L}{\dot{w}_{in}} = \frac{h_1 - h_4}{w_{in}} = \frac{(230.03 - 111.37) \ kJ/kg}{55.21 \ kJ/kg} = 2.14 \Leftarrow \boxed{\frac{1 \ \text{mark}}{1 \ \text{mark}}}$$

Note: I have calculated q_L as the actual heat gain across the evaporator. Cengel calculates $q_L = q_H - w_{in}$. Since w_{in} is biased by the heat gain at the compressor this leads to a COP = 2.33. I will accept this as a valid solution although, the COP should only be based on the actual energy gain which is $h_1 - h_4$.