ME354

Thermodynamics 2

Quiz \#4-T01:
Name:
ID \#: \qquad

Problem: The compression ratio of an ideal dual cycle is 14. Air is at $100 \boldsymbol{k P a}$ and $\mathbf{3 0 0} K$ at the beginning of the compression process and at $2200 K$ at the end of the heataddition process. Heat transfer to air takes place partly at constant volume and partly at constant pressure, and it amounts to $1520.4 \mathrm{~kJ} / \mathrm{kg}$. Assuming variable specific heats for air, determine:
(a) the fraction of heat transferred at constant volume and
(b) the thermal efficiency of the cycle.

Assumptions

1. air standard assumptions
2. $K E=P E \rightarrow \mathbf{0}$
3. air is an ideal gas with variable specific heats

Part a) The process from $\mathbf{1 - 2}$ is isentropic compression. From Table A-17 at $\boldsymbol{T}_{\mathbf{1}}=\mathbf{3 0 0} K$

$$
\begin{aligned}
u_{1} & =214.07 \mathrm{~kJ} / \mathrm{kg} \\
v_{r_{1}} & =621.2
\end{aligned}
$$

We can find the corrected properties at point 2 by:

$$
v_{r_{2}}=\frac{v_{2}}{v_{1}} v_{r_{1}}=\frac{1}{r} v_{r_{1}}=\frac{1}{14}(621.2)=44.37
$$

and

$$
\begin{aligned}
T_{2} & =823.14 \mathrm{~K} \\
u_{2} & =611.16 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

The process from 2-x and x-3 is a heat addition process. From Table A-17 at $\boldsymbol{T}_{\mathbf{3}}=\mathbf{2 2 0 0} \boldsymbol{K}$

$$
\begin{aligned}
h_{3} & =2503.2 \mathrm{~kJ} / \mathrm{kg} \\
v_{r_{3}} & =2.012
\end{aligned}
$$

From a 1st law energy balance

$$
\begin{aligned}
q_{i n} & =q_{x-2, i n}+q_{3-x, i n}=\left(u_{x}-u_{2}\right)+\left(h_{3}-h_{x}\right) \\
1520.4 & =\left(u_{x}-611.16\right)+\left(2503.2-h_{x}\right)
\end{aligned}
$$

By trial and error , from Table A-17, we see that the following conditions satisfy the energy balance

$$
\begin{aligned}
T_{x} & =1300 K \\
h_{x} & =1395.97 \mathrm{~kJ} / \mathrm{kg} \\
u_{x} & =1022.82 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

and

$$
q_{2-x, i n}=u_{x}=u_{2}=1022.82-611.16=411.66 \mathrm{~kJ} / \mathrm{kg}
$$

and

$$
\text { ratio } \left.=\frac{q_{2-x, i n}}{q_{i n}}=\frac{411.66}{1520.4}=0.271=27.1 \% \Leftarrow \operatorname{part} a\right)
$$

Part b)

To find the efficiency we need to determine $\boldsymbol{q}_{\text {out }}$. First, determine the cutoff ratio between $\boldsymbol{x}-\mathbf{3}$. For an ideal gas

$$
P_{3}=\frac{T_{3}}{v_{3}}=P_{x}=\frac{T_{x}}{v_{x}} \quad \rightarrow \quad r_{v}=\frac{v_{3}}{v_{x}}=\frac{T_{3}}{T_{x}}=\frac{2200 \mathrm{~K}}{1300 \mathrm{~K}}=1.692
$$

For the isentropic process between $\mathbf{3 - 4}$

$$
\begin{aligned}
v_{r_{4}} & =\frac{v_{4}}{v_{3}} v_{r_{3}}=\frac{v_{4}}{1.692 v_{x}} v_{r_{3}}=\frac{r}{1.692} v_{r_{3}} \\
& =\frac{14}{1.692}(2.012)=16.648
\end{aligned}
$$

From Table A-17

$$
u_{4}=886.3 \mathrm{~kJ} / \mathrm{kg}
$$

and

$$
q_{\text {out }}=u_{4}-u_{1}=886.3-214.07=672.23 \mathrm{~kJ} / \mathrm{kg}
$$

The cycle efficiency is

$$
\eta_{t h}=1-\frac{q_{\text {out }}}{q_{\text {in }}}=\frac{672.23}{1520.4}=0.558=55.8 \%
$$

