12.16

A large stationary Brayton cycle gas-turbine power plant delivers a power output of 100 MW to an electric generator. The minimum temperature in the cycle is 300 K , and the maximum temperature is 1600 K . The minimum pressure in the cycle is 100 kPa , and the compressor pressure ratio is 14 to 1 . Calculate the power output of the turbine. What fraction of the turbine output is required to drive the compressor? What is the thermal efficiency of the cycle?

Solution:
Brayton cycle so this means:
Minimum T: $\quad T_{1}=300 \mathrm{~K}$
Maximum T: $\quad T_{3}=1600 \mathrm{~K}$
Pressure ratio: $\quad \mathrm{P}_{2} / \mathrm{P}_{1}=14$

Solve using constant $\mathrm{C}_{\mathrm{P} 0}$

Compression in compressor: $\mathrm{s}_{2}=\mathrm{s}_{1} \Rightarrow$ Implemented in Eq.8.32

$$
\begin{gathered}
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=300(14)^{0.286}=638.1 \mathrm{~K} \\
\mathrm{w}_{\mathrm{C}}=\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=1.004(638.1-300)=339.5 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

Expansion in turbine: $\quad \mathrm{s}_{4}=\mathrm{s}_{3} \Rightarrow$ Implemented in Eq.8.32

$$
\begin{gathered}
\mathrm{T}_{4}=\mathrm{T}_{3}\left(\mathrm{P}_{4} / \mathrm{P}_{3}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=1600(1 / 14)^{0.286}=752.2 \mathrm{~K} \\
\mathrm{w}_{\mathrm{T}}=\mathrm{h}_{3}-\mathrm{h}_{4}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right)=1.004(1600-752.2)=851.2 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{w}_{\mathrm{NET}}=851.2-339.5=511.7 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

Do the overall net and cycle efficiency

$$
\begin{aligned}
& \dot{\mathrm{m}}=\dot{\mathrm{W}}_{\mathrm{NET}} / \mathrm{w}_{\mathrm{NET}}=100000 / 511.7=195.4 \mathrm{~kg} / \mathrm{s} \\
& \dot{\mathrm{~W}}_{\mathrm{T}}=\dot{\mathrm{m}}_{\mathrm{T}}=195.4 \times 851.2=\mathbf{1 6 6 . 3 2} \mathbf{~ M W} \\
& \mathrm{w}_{\mathrm{C}} / \mathrm{w}_{\mathrm{T}}=339.5 / 851.2=\mathbf{0 . 3 9 9}
\end{aligned}
$$

Energy input is from the combustor

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{H}}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)=1.004(1600-638.1)=965.7 \mathrm{~kJ} / \mathrm{kg} \\
& \eta_{\mathrm{TH}}=\mathrm{w}_{\mathrm{NET}} / \mathrm{q}_{\mathrm{H}}=511.7 / 965.7=\mathbf{0 . 5 3 0}
\end{aligned}
$$

12.17

Consider an ideal air-standard Brayton cycle in which the air into the compressor is at $100 \mathrm{kPa}, 20^{\circ} \mathrm{C}$, and the pressure ratio across the compressor is $12: 1$. The maximum temperature in the cycle is $1100^{\circ} \mathrm{C}$, and the air flow rate is $10 \mathrm{~kg} / \mathrm{s}$. Assume constant specific heat for the air, value from Table A.5. Determine the compressor work, the turbine work, and the thermal efficiency of the cycle.

Solution:

Compression ratio
$\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=12$
Max temperature
$\mathrm{T}_{3}=1100^{\circ} \mathrm{C}$
$\dot{\mathrm{m}}=10 \mathrm{~kg} / \mathrm{s}$

The compression is reversible and adiabatic so constant s. From Eq.8.32

$$
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=293.2(12)^{0.286}=596.8 \mathrm{~K}
$$

Energy equation with compressor work in

$$
\mathrm{w}_{\mathrm{C}}=-{ }_{1} \mathrm{w}_{2}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=1.004(596.8-293.2)=304.8 \mathrm{~kJ} / \mathrm{kg}
$$

The expansion is reversible and adiabatic so constant s. From Eq.8.32

$$
\mathrm{T}_{4}=\mathrm{T}_{3}\left(\frac{\mathrm{P}_{4}}{\mathrm{P}_{3}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=1373.2\left(\frac{1}{12}\right)^{0.286}=674.7 \mathrm{~K}
$$

Energy equation with turbine work out

$$
\mathrm{w}_{\mathrm{T}}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right)=1.004(1373.2-674.7)=701.3 \mathrm{~kJ} / \mathrm{kg}
$$

Scale the work with the mass flow rate

$$
\dot{\mathrm{W}}_{\mathrm{C}}=\dot{\mathrm{m}}_{\mathrm{C}}=3048 \mathrm{~kW}, \quad \dot{\mathrm{~W}}_{\mathrm{T}}=\dot{\mathrm{m}}_{\mathrm{T}}=7013 \mathbf{k W}
$$

Energy added by the combustion process

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{H}}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)=1.004(1373.2-596.8)=779.5 \mathrm{~kJ} / \mathrm{kg} \\
& \eta_{\mathrm{TH}}=\mathrm{w}_{\mathrm{NET}} / \mathrm{q}_{\mathrm{H}}=(701.3-304.8) / 779.5=\mathbf{0 . 5 0 9}
\end{aligned}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

12.18

Repeat Problem 12.17, but assume variable specific heat for the air, table A.7. Consider an ideal air-standard Brayton cycle in which the air into the compressor is at $100 \mathrm{kPa}, 20^{\circ} \mathrm{C}$, and the pressure ratio across the compressor is $12: 1$. The maximum temperature in the cycle is $1100^{\circ} \mathrm{C}$, and the air flow rate is $10 \mathrm{~kg} / \mathrm{s}$. Assume constant specific heat for the air, value from Table A.5. Determine the compressor work, the turbine work, and the thermal efficiency of the cycle.
Solution:
From A.7: $\quad \mathrm{h}_{1}=293.6 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{s}_{\mathrm{T} 1}^{\mathrm{o}}=6.84597 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
The compression is reversible and adiabatic so constant s. From Eq.8.28

$$
\begin{aligned}
\mathrm{s}_{2}= & \mathrm{s}_{1} \Rightarrow \mathrm{~s}_{\mathrm{T} 2}^{\mathrm{o}}=\mathrm{s}_{\mathrm{T} 1}^{\mathrm{o}}+\mathrm{R} \ln \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)=6.84597+0.287 \ln 12=7.55914 \\
& \Rightarrow \mathrm{~T}_{2}=590 \mathrm{~K}, \mathrm{~h}_{2}=597.2 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Energy equation with compressor work in

$$
\mathrm{w}_{\mathrm{C}}=-{ }_{1} \mathrm{w}_{2}=\mathrm{h}_{2}-\mathrm{h}_{1}=597.2-293.6=303.6 \mathrm{~kJ} / \mathrm{kg}
$$

The expansion is reversible and adiabatic so constant s. From Eq.8.28
From A.7: $\quad \mathrm{h}_{3}=1483.1 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{s}_{\mathrm{T} 3}^{\mathrm{o}}=8.50554 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

$$
\begin{aligned}
\mathrm{s}_{4} & =\mathrm{s}_{3} \Rightarrow \mathrm{~s}_{\mathrm{T} 4}^{\mathrm{o}}=\mathrm{s}_{\mathrm{T} 3}^{\mathrm{o}}+\mathrm{R} \ln \left(\mathrm{P}_{4} / \mathrm{P}_{3}\right)=8.50554+0.287 \ln (1 / 12)=7.79237 \\
& \Rightarrow \mathrm{~T}_{4}=734.8 \mathrm{~K}, \mathrm{~h}_{4}=751.1 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Energy equation with turbine work out

$$
\mathrm{w}_{\mathrm{T}}=\mathrm{h}_{3}-\mathrm{h}_{4}=1483.1-751.1=732 \mathrm{~kJ} / \mathrm{kg}
$$

Scale the work with the mass flow rate

$$
\Rightarrow \dot{\mathrm{W}}_{\mathrm{C}}=\dot{\mathrm{m}}_{\mathrm{C}}=3036 \mathrm{~kW}, \quad \dot{\mathrm{~W}}_{\mathrm{T}}=\dot{\mathrm{m}}_{\mathrm{T}}=7320 \mathrm{~kW}
$$

Energy added by the combustion process

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{H}}=\mathrm{h}_{3}-\mathrm{h}_{2}=1483.1-597.2=885.9 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{w}_{\mathrm{NET}}=\mathrm{w}_{\mathrm{T}}-\mathrm{w}_{\mathrm{C}}=732-303.6=428.4 \mathrm{~kJ} / \mathrm{kg} \\
& \eta_{\mathrm{TH}}=\mathrm{w}_{\mathrm{NET}} / \mathrm{q}_{\mathrm{H}}=428.4 / 885.9=\mathbf{0 . 4 8 4}
\end{aligned}
$$

A two-stage air compressor has an intercooler between the two stages as shown in Fig. P12.29. The inlet state is $100 \mathrm{kPa}, 290 \mathrm{~K}$, and the final exit pressure is 1.6 MPa . Assume that the constant pressure intercooler cools the air to the inlet temperature, $\mathrm{T}_{3}=\mathrm{T}_{1}$. It can be shown that the optimal pressure, $\mathrm{P}_{2}=\left(\mathrm{P}_{1} \mathrm{P}_{4}\right)^{1 / 2}$, for minimum total compressor work. Find the specific compressor works and the intercooler heat transfer for the optimal P_{2}.

Solution:
Optimal intercooler pressure $P_{2}=\sqrt{100 \times 1600}=400 \mathrm{kPa}$

$$
1: \quad \mathrm{h}_{1}=290.43 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~s}_{\mathrm{T} 1}^{\mathrm{o}}=6.83521 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
$$

C.V. C1: $\quad \mathrm{w}_{\mathrm{C} 1}=\mathrm{h}_{2}-\mathrm{h}_{1}, \quad \mathrm{~s}_{2}=\mathrm{s}_{1} \quad$ leading to Eq.8.28

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{s}_{\mathrm{T} 2}^{\mathrm{o}}=\mathrm{s}_{\mathrm{T} 1}^{\mathrm{o}}+\mathrm{R} \ln \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)=6.83521+0.287 \ln 4=7.2331 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
& \Rightarrow \quad \mathrm{~T}_{2}=430.3 \mathrm{~K}, \quad \mathrm{~h}_{2}=432.05 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{w}_{\mathrm{C} 1}=432.05-290.43=\mathbf{1 4 1 . 6} \mathbf{~ k J} / \mathbf{k g}
\end{aligned}
$$

C.V. Cooler: $T_{3}=T_{1} \Rightarrow h_{3}=h_{1}$

$$
\mathrm{q}_{\text {OUT }}=\mathrm{h}_{2}-\mathrm{h}_{3}=\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{w}_{\mathrm{C} 1}=\mathbf{1 4 1 . 6} \mathbf{~ k J} / \mathbf{k g}
$$

C.V. C2: $\mathrm{T}_{3}=\mathrm{T}_{1}, \quad \mathrm{~s}_{4}=\mathrm{s}_{3}$ and since $\mathrm{s}_{\mathrm{T} 3}^{\mathrm{o}}=\mathrm{s}_{\mathrm{T} 1}^{\mathrm{o}}, \mathrm{P}_{4} / \mathrm{P}_{3}=\mathrm{P}_{2} / \mathrm{P}_{1}$

$$
\Rightarrow \quad \mathrm{s}_{\mathrm{T} 4}^{\mathrm{o}}=\mathrm{s}_{\mathrm{T} 3}^{\mathrm{o}}+\mathrm{R} \ln \left(\mathrm{P}_{4} / \mathrm{P}_{3}\right)=\mathrm{s}_{\mathrm{T} 2}^{\mathrm{o}} \text {, so we have } \mathrm{T}_{4}=\mathrm{T}_{2}
$$

Thus we get $\mathrm{w}_{\mathrm{C} 2}=\mathrm{w}_{\mathrm{C} 1}=\mathbf{1 4 1 . 6} \mathbf{~ k J} / \mathbf{k g}$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

12.36

Repeat Problem 12.16, but assume that the compressor has an isentropic efficiency of 85% and the turbine an isentropic efficiency of 88%.

Solution:
Brayton cycle so this means:
Minimum T: $\quad \mathrm{T}_{1}=300 \mathrm{~K}$
Maximum T: $\quad \mathrm{T}_{3}=1600 \mathrm{~K}$
Pressure ratio: $\quad \mathrm{P}_{2} / \mathrm{P}_{1}=14$
Solve using constant $\mathrm{C}_{\mathrm{P} 0}$

Ideal compressor: $\mathrm{s}_{2}=\mathrm{s}_{1} \Rightarrow$ Implemented in Eq.8.32

$$
\begin{aligned}
& \mathrm{T}_{2 \mathrm{~s}}=\mathrm{T}_{1}\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=300(14)^{0.286}=638.1 \mathrm{~K} \\
& \mathrm{w}_{\mathrm{Cs}}=\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=1.004(638.1-300)=339.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Actual compressor

$$
\begin{gathered}
\Rightarrow \mathrm{w}_{\mathrm{C}}=\mathrm{w}_{\mathrm{SC}} / \mathrm{\eta}_{\mathrm{SC}}=339.5 / 0.85=399.4 \mathrm{~kJ} / \mathrm{kg}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
\Rightarrow \mathrm{T}_{2}=\mathrm{T}_{1}+\mathrm{w}_{\mathrm{c}} / \mathrm{C}_{\mathrm{P} 0}=300+399.4 / 1.004=697.8 \mathrm{~K}
\end{gathered}
$$

Ideal turbine: $\quad \mathrm{s}_{4}=\mathrm{s}_{3} \Rightarrow$ Implemented in Eq.8.32

$$
\begin{gathered}
\mathrm{T}_{4 \mathrm{~s}}=\mathrm{T}_{3}\left(\mathrm{P}_{4} / \mathrm{P}_{3}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=1600(1 / 14)^{0.286}=752.2 \mathrm{~K} \\
\mathrm{w}_{\mathrm{Ts}}=\mathrm{h}_{3}-\mathrm{h}_{4}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right)=1.004(1600-752.2)=851.2 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

Actual turbine

$$
\begin{gathered}
\Rightarrow \mathrm{w}_{\mathrm{T}}=\eta_{\mathrm{ST}} \mathrm{w}_{\mathrm{ST}}=0.88 \times 851.2=749.1 \mathrm{~kJ} / \mathrm{kg}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right) \\
\Rightarrow \mathrm{T}_{4}=\mathrm{T}_{3}-\mathrm{w}_{\mathrm{T}} / \mathrm{C}_{\mathrm{P} 0}=1600-749.1 / 1.004=853.9 \mathrm{~K}
\end{gathered}
$$

Do the overall net and cycle efficiency

$$
\begin{gathered}
\mathrm{w}_{\mathrm{NET}}=\mathrm{w}_{\mathrm{T}}-\mathrm{w}_{\mathrm{C}}=749.1-399.4=349.7 \mathrm{~kJ} / \mathrm{kg} \\
\dot{\mathrm{~m}}=\dot{\mathrm{W}}_{\mathrm{NET}} / \mathrm{w}_{\mathrm{NET}}=100000 / 349.7=286.0 \mathrm{~kg} / \mathrm{s} \\
\dot{\mathrm{~W}}_{\mathrm{T}}=\dot{\mathrm{m}} \mathrm{w}_{\mathrm{T}}=286.0 \times 749.1=\mathbf{2 1 4 . 2} \mathbf{~ M W} \\
\mathrm{w}_{\mathrm{C}} / \mathrm{w}_{\mathrm{T}}=399.4 / 749.1=\mathbf{0 . 5 3 3}
\end{gathered}
$$

Energy input is from the combustor

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{H}}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)=1.004(1600-697.8)=905.8 \mathrm{~kJ} / \mathrm{kg} \\
& \eta_{\mathrm{TH}}=\mathrm{w}_{\mathrm{NET}} / \mathrm{q}_{\mathrm{H}}=349.7 / 905.8=\mathbf{0 . 3 8 6}
\end{aligned}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

12.43

Consider an ideal air-standard cycle for a gas-turbine, jet propulsion unit, such as that shown in Fig. 12.9. The pressure and temperature entering the compressor are $90 \mathrm{kPa}, 290 \mathrm{~K}$. The pressure ratio across the compressor is 14 to 1 , and the turbine inlet temperature is 1500 K . When the air leaves the turbine, it enters the nozzle and expands to 90 kPa . Determine the velocity of the air leaving the nozzle.

Solution:

C.V. Compressor: Reversible and adiabatic $\quad s_{2}=s_{1}$

From Eq.8.25, 8.32

$$
\begin{gathered}
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=290(14)^{0.2857}=616.4 \mathrm{~K} \\
\mathrm{w}_{\mathrm{C}}=\mathrm{h}_{2}-\mathrm{h}_{1} \approx \mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=1.004(616.4-290)=327.7 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

C.V. Turbine: $\mathrm{w}_{\mathrm{T}}=\mathrm{h}_{3}-\mathrm{h}_{4}=\mathrm{w}_{\mathrm{C}}$ and $\mathrm{s}_{4}=\mathrm{s}_{3} \Rightarrow$

$$
\mathrm{T}_{4}=\mathrm{T}_{3}-\mathrm{w}_{\mathrm{C}} / \mathrm{C}_{\mathrm{P} 0}=1500-327.7 / 1.004=1173.6 \mathrm{~K}
$$

C.V. Nozzle: $s_{5}=s_{4}=s_{3} \quad$ so from Eq.8.32

$$
\mathrm{T}_{5}=\mathrm{T}_{3}\left(\frac{\mathrm{P}_{5}}{\mathrm{P}_{3}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=1500\left(\frac{90}{1260}\right)^{0.2857}=705.7 \mathrm{~K}
$$

Now the energy equation

$$
\begin{aligned}
& (1 / 2) \mathbf{V}_{5}^{2}=\mathrm{h}_{4}-\mathrm{h}_{5} \approx \mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{4}-\mathrm{T}_{5}\right)=1.004(1173.6-705.7)=469.77 \mathrm{~kJ} / \mathrm{kg} \\
& \Rightarrow \quad \mathbf{V}_{5}=\sqrt{2 \times 1000 \times 469.77}=\mathbf{9 6 9} \mathbf{~ m} / \mathbf{s}
\end{aligned}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

Solve the previous problem using the air tables.
Consider an ideal air-standard cycle for a gas-turbine, jet propulsion unit, such as that shown in Fig. 12.9. The pressure and temperature entering the compressor are $90 \mathrm{kPa}, 290 \mathrm{~K}$. The pressure ratio across the compressor is 14 to 1 , and the turbine inlet temperature is 1500 K . When the air leaves the turbine, it enters the nozzle and expands to 90 kPa . Determine the pressure at the nozzle inlet and the velocity of the air leaving the nozzle.
C.V. Compressor: Reversible and adiabatic $\quad s_{2}=s_{1} \quad$ From Eq.8.28

$$
\begin{gathered}
\Rightarrow \quad \mathrm{s}_{\mathrm{T} 2}^{\mathrm{o}}=\mathrm{s}_{\mathrm{T} 1}^{\mathrm{o}}+\mathrm{R} \ln \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)=6.83521+0.287 \ln 14=7.59262 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
\quad \text { From A. } 7 \quad \mathrm{~h}_{2}=617.2 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~T}_{2}=609.4 \mathrm{~K} \\
\mathrm{w}_{\mathrm{C}}=\mathrm{h}_{2}-\mathrm{h}_{1}=617.2-290.43=326.8 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

C.V. Turbine: $\mathrm{w}_{\mathrm{T}}=\mathrm{h}_{3}-\mathrm{h}_{4}=\mathrm{w}_{\mathrm{C}}$ and $\mathrm{s}_{4}=\mathrm{s}_{3} \Rightarrow$

$$
\begin{aligned}
& \mathrm{h}_{4}=\mathrm{h}_{3}-\mathrm{w}_{\mathrm{C}}=1635.8-326.8=1309 \mathrm{~kJ} / \mathrm{kg} \\
& \quad \Rightarrow \quad \mathrm{~s}_{\mathrm{T} 4}^{\mathrm{o}}=8.37142 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}, \quad \mathrm{~T}_{4}=1227 \mathrm{~K} \\
& \mathrm{P}_{4}=\mathrm{P}_{3} \exp \left[\left(\mathrm{~s}_{\mathrm{T} 4}^{\mathrm{o}}-\mathrm{s}_{\mathrm{T} 3}^{\mathrm{o}}\right) / \mathrm{R}\right]=1260 \exp [(8.37142-8.61208) / 0.287] \\
& =1260 \exp (-0.83854)=\mathbf{5 4 4 . 8} \mathbf{~ k P a}
\end{aligned}
$$

C.V. Nozzle: $s_{5}=s_{4}=s_{3} \quad$ so from Eq.8.28

$$
\begin{aligned}
& \Rightarrow \mathrm{s}_{\mathrm{T} 5}^{\mathrm{o}}=\frac{\mathrm{s}}{\mathrm{~T} 3}+\mathrm{R} \ln \left(\mathrm{P}_{5} / \mathrm{P}_{3}\right)=8.61208+0.287 \ln (1 / 14)=7.85467 \mathrm{~kJ} / \mathrm{kgK} \\
& \quad=>\text { From A. } 7 \quad \mathrm{~T}_{5}=778 \mathrm{~K}, \quad \mathrm{~h}_{5}=798.2 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Now the energy equation

$$
(1 / 2) \mathbf{V}_{5}^{2}=\mathrm{h}_{4}-\mathrm{h}_{5}=510.8 \Rightarrow \mathbf{V}_{5}=\sqrt{2 \times 1000 \times 510.8}=\mathbf{1 0 1 1} \mathbf{~ m} / \mathbf{s}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

Consider a turboprop engine where the turbine powers the compressor and a propeller. Assume the same cycle as in Problem 12.43 with a turbine exit temperature of 900 K . Find the specific work to the propeller and the exit velocity.

C.V. Compressor: Reversible and adiabatic $\quad \mathrm{s}_{2}=\mathrm{s}_{1} \quad$ From Eq.8.25, 8.32

$$
\begin{gathered}
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=290(14)^{0.2857}=616.4 \mathrm{~K} \\
\mathrm{w}_{\mathrm{C}}=\mathrm{h}_{2}-\mathrm{h}_{1} \approx \mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=1.004(616.4-290)=327.7 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

C.V. Turbine: $\mathrm{w}_{\mathrm{T}}=\mathrm{h}_{3}-\mathrm{h}_{4}=\mathrm{w}_{\mathrm{C}}+\mathrm{w}_{\text {prop }}$ and $\mathrm{s}_{4}=\mathrm{s}_{3} \Rightarrow$

$$
\mathrm{w}_{\text {prop }}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right)-\mathrm{w}_{\mathrm{C}}=1.004(1500-900)-327.7=274.7 \mathrm{~kJ} / \mathrm{kg}
$$

C.V. Nozzle: $s_{5}=s_{4}=s_{3} \quad$ so from Eq.8.32

$$
\mathrm{T}_{5}=\mathrm{T}_{3}\left(\frac{\mathrm{P}_{5}}{\mathrm{P}_{3}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=1500\left(\frac{90}{1260}\right)^{0.2857}=705.7 \mathrm{~K}
$$

Now the energy equation

$$
\begin{aligned}
& (1 / 2) \mathbf{V}_{5}^{2}=\mathrm{h}_{4}-\mathrm{h}_{5} \approx \mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{4}-\mathrm{T}_{5}\right)=1.004(900-705.7)=195.08 \mathrm{~kJ} / \mathrm{kg} \\
& \Rightarrow \quad \mathbf{V}_{5}=\sqrt{2 \times 1000 \times 195.08}=\mathbf{6 2 5} \mathbf{~ m} / \mathbf{s}
\end{aligned}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

To approximate an actual spark-ignition engine consider an air-standard Otto cycle that has a heat addition of $1800 \mathrm{~kJ} / \mathrm{kg}$ of air, a compression ratio of 7 , and a pressure and temperature at the beginning of the compression process of 90 kPa , $10^{\circ} \mathrm{C}$. Assuming constant specific heat, with the value from Table A.5, determine the maximum pressure and temperature of the cycle, the thermal efficiency of the cycle and the mean effective pressure.

Solution:

Compression: Reversible and adiabatic so constant s from Eq.8.33-34

$$
\begin{aligned}
& \mathrm{P}_{2}=\mathrm{P}_{1}\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{\mathrm{k}}=90(7)^{1.4}=1372 \mathrm{kPa} \\
& \mathrm{~T}_{2}=\mathrm{T}_{1}\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{\mathrm{k}-1}=283.2 \times(7)^{0.4}=616.6 \mathrm{~K}
\end{aligned}
$$

Combustion: constant volume

$$
\begin{aligned}
& \mathrm{T}_{3}=\mathrm{T}_{2}+\mathrm{q}_{\mathrm{H}} / \mathrm{C}_{\mathrm{V} 0}=616.6+1800 / 0.717=\mathbf{3 1 2 7} \mathbf{K} \\
& \mathrm{P}_{3}=\mathrm{P}_{2} \mathrm{~T}_{3} / \mathrm{T}_{2}=1372 \times 3127 / 616.6=\mathbf{6 9 5 8} \mathbf{~ k P a}
\end{aligned}
$$

Efficiency and net work

$$
\begin{aligned}
& \eta_{\mathrm{TH}}=1-\mathrm{T}_{1} / \mathrm{T}_{2}=1-283.2 / 616.5=\mathbf{0 . 5 4 1} \\
& \mathrm{w}_{\text {net }}=\eta_{\mathrm{TH}} \times \mathrm{q}_{\mathrm{H}}=0.541 \times 1800=973.8 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Displacement and $\mathrm{P}_{\text {meff }}$

$$
\begin{aligned}
& \mathrm{v}_{1}=\mathrm{RT}_{1} / \mathrm{P}_{1}=(0.287 \times 283.2) / 90=0.9029 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{v}_{2}=(1 / 7) \mathrm{v}_{1}=0.1290 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{P}_{\text {meff }}=\frac{\mathrm{w}_{\mathrm{NET}}}{\mathrm{v}_{1}-\mathrm{v}_{2}}=\frac{973.8}{0.9029-0.129}=\mathbf{1 2 5 8} \mathbf{~ k P a}
\end{aligned}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

Repeat Problem 12.67, but assume variable specific heat. The ideal gas air tables, Table A.7, are recommended for this calculation (or the specific heat from Fig. 5.10 at high temperature).

Solution:
Table A. 7 is used with interpolation.

$$
\mathrm{T}_{1}=283.2 \mathrm{~K}, \quad \mathrm{u}_{1}=202.3 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~s}_{\mathrm{T} 1}^{\mathrm{o}}=6.8113 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
$$

Compression 1 to 2: $\mathrm{s}_{2}=\mathrm{s}_{1} \Rightarrow$ From Eq.8.28

$$
\begin{aligned}
& 0=\mathrm{s}_{\mathrm{T} 2}^{\mathrm{o}}-\mathrm{s}_{\mathrm{T} 1}^{\mathrm{o}}-\mathrm{R} \ln \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)=\mathrm{s}_{\mathrm{T} 2}^{\mathrm{o}}-\mathrm{s}_{\mathrm{T} 1}^{\mathrm{o}}-\mathrm{R} \ln \left(\mathrm{~T}_{2} \mathrm{v}_{1} / \mathrm{T}_{1} \mathrm{v}_{2}\right) \\
& \mathrm{s}_{\mathrm{T} 2}^{\mathrm{o}}-\mathrm{R} \ln \left(\mathrm{~T}_{2} / \mathrm{T}_{1}\right)=\mathrm{s}_{\mathrm{T} 1}^{\mathrm{o}}+\mathrm{R} \ln \left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)=6.8113+0.287 \ln 7=7.3698
\end{aligned}
$$

This becomes trial and error so estimate first at 600 K and use A.7.1.

$$
\begin{aligned}
& \text { LHS }_{600}=7.5764-0.287 \ln (600 / 283.2)=7.3609 \text { (too low) } \\
& \text { LHS }_{620}=7.6109-0.287 \ln (620 / 283.2)=7.3860 \text { (too high) } \\
& \text { Interpolate to get: } T_{2}=607.1 \mathrm{~K}, \quad u_{2}=440.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\begin{gathered}
=>-{ }_{1} \mathrm{w}_{2}=\mathrm{u}_{2}-\mathrm{u}_{1}=238.2 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{u}_{3}=440.5+1800=2240.5 \quad \Rightarrow \quad \mathrm{~T}_{3}=\mathbf{2 5 7 5 . 8} \mathbf{K}, \quad \mathrm{s}_{\mathrm{T} 3}^{\mathrm{o}}=9.2859 \mathrm{~kJ} / \mathrm{kgK} \\
\mathrm{P}_{3}=90 \times 7 \times 2575.8 / 283.2=\mathbf{5 7 3 0} \mathbf{~ k P a}
\end{gathered}
$$

Expansion 3 to 4: $\quad s_{4}=s_{3} \Rightarrow \quad$ From Eq.8.28 as before

$$
\mathrm{s}_{\mathrm{T} 4}^{\mathrm{o}}-\mathrm{R} \ln \left(\mathrm{~T}_{4} / \mathrm{T}_{3}\right)=\mathrm{s}_{\mathrm{T} 3}^{\mathrm{o}}+\mathrm{R} \ln \left(\mathrm{v}_{3} / \mathrm{v}_{4}\right)=9.2859+0.287 \ln (1 / 7)=8.7274
$$

This becomes trial and error so estimate first at 1400 K and use A.7.1.

$$
\begin{aligned}
& \text { LHS }_{1400}=8.5289-0.287 \ln (1400 / 2575.8)=8.7039(\text { too low }) \\
& \text { LHS }_{1450}=8.5711-0.287 \ln (1450 / 2575.8)=8.7360(\text { too high })
\end{aligned}
$$

$$
\text { Interpolation } \Rightarrow \mathrm{T}_{4}=1436.6 \mathrm{~K}, \quad \mathrm{u}_{4}=1146.9 \mathrm{~kJ} / \mathrm{kg}
$$

$$
{ }_{3} \mathrm{w}_{4}=\mathrm{u}_{3}-\mathrm{u}_{4}=2240.5-1146.9=1093.6 \mathrm{~kJ} / \mathrm{kg}
$$

Net work, efficiency and mep

$$
\begin{gathered}
\Rightarrow \quad \mathrm{w}_{\text {net }}={ }_{3} \mathrm{w}_{4}+{ }_{1} \mathrm{w}_{2}=1093.6-238.2=855.4 \mathrm{~kJ} / \mathrm{kg} \\
\eta_{\mathrm{TH}}=\mathrm{w}_{\text {net }} / \mathrm{q}_{\mathrm{H}}=855.4 / 1800=\mathbf{0 . 4 7 5} \\
\mathrm{v}_{1}=\mathrm{RT}_{1} / \mathrm{P}_{1}=(0.287 \times 283.2) / 90=0.9029 \mathrm{~m}^{3} / \mathrm{kg} \\
\mathrm{v}_{2}=(1 / 7) \mathrm{v}_{1}=0.1290 \mathrm{~m}^{3} / \mathrm{kg} \\
\mathrm{P}_{\mathrm{meff}}=\frac{\mathrm{w}_{\text {net }}}{\mathrm{v}_{1}-\mathrm{v}_{2}}=855.4 /(0.9029-0.129)=\mathbf{1 1 0 5} \mathbf{~ k P a}
\end{gathered}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

12.81

It is found experimentally that the power stroke expansion in an internal combustion engine can be approximated with a polytropic process with a value of the polytropic exponent n somewhat larger than the specific heat ratio k. Repeat Problem 12.67 but assume that the expansion process is reversible and polytropic (instead of the isentropic expansion in the Otto cycle) with n equal to 1.50 .

See solution to 12.67 except for process 3 to 4 .

$$
\mathrm{v}_{3}=\mathrm{RT}_{3} / \mathrm{P}_{3}=\mathrm{v}_{2}=0.129 \mathrm{~m}^{3} / \mathrm{kg}, \quad \mathrm{v}_{4}=\mathrm{v}_{1}=0.9029 \mathrm{~m}^{3} / \mathrm{kg}
$$

Process: $\mathrm{Pv}^{1.5}=$ constant.

$$
\begin{aligned}
& \mathrm{P}_{4}=\mathrm{P}_{3}\left(\mathrm{v}_{3} / \mathrm{v}_{4}\right)^{1.5}=6958(1 / 7)^{1.5}=375.7 \mathrm{kPa} \\
& \mathrm{~T}_{4}=\mathrm{T}_{3}\left(\mathrm{v}_{3} / \mathrm{v}_{4}\right)^{0.5}=3127(1 / 7)^{0.5}=1181.9 \mathrm{~K}
\end{aligned}
$$

$$
{ }_{1} \mathrm{~W}_{2}=\int \mathrm{Pdv}=\frac{\mathrm{R}}{1-1.4}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=\frac{0.287}{-0.4}(606.6-283.15)=-239.3 \mathrm{~kJ} / \mathrm{kg}
$$

$$
3^{\mathrm{w}_{4}}=\int \mathrm{Pdv}=\mathrm{R}\left(\mathrm{~T}_{4}-\mathrm{T}_{3}\right) /(1-1.5)
$$

$$
=-0.287(1181.9-3127) / 0.5=1116.5 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{w}_{\mathrm{NET}}=1116.5-239.3=877.2 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\eta_{\mathrm{CYCLE}}=\mathrm{w}_{\mathrm{NET}} / \mathrm{q}_{\mathrm{H}}=877.2 / 1800=\mathbf{0 . 4 8 7}
$$

$$
\mathrm{P}_{\mathrm{meff}}=\frac{\mathrm{w}_{\text {net }}}{\mathrm{v}_{1}-\mathrm{v}_{2}}=877.2 /(0.9029-0.129)=\mathbf{1 1 3 3} \mathbf{~ k P a}
$$

Note a smaller $\mathrm{w}_{\mathrm{NET}}, \eta_{\mathrm{CYCLE}}, \mathrm{P}_{\text {meff }}$ compared to an ideal cycle.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

12.82

In the Otto cycle all the heat transfer q_{H} occurs at constant volume. It is more realistic to assume that part of q_{H} occurs after the piston has started its downward motion in the expansion stroke. Therefore, consider a cycle identical to the Otto cycle, except that the first two-thirds of the total q_{H} occurs at constant volume and the last one-third occurs at constant pressure. Assume that the total q_{H} is 2100 $\mathrm{kJ} / \mathrm{kg}$, that the state at the beginning of the compression process is $90 \mathrm{kPa}, 20^{\circ} \mathrm{C}$, and that the compression ratio is 9 . Calculate the maximum pressure and temperature and the thermal efficiency of this cycle. Compare the results with those of a conventional Otto cycle having the same given variables.

$$
\begin{aligned}
& \mathrm{P}_{1}=90 \mathrm{kPa}, \mathrm{~T}_{1}=20^{\circ} \mathrm{C} \\
& \mathrm{r}_{\mathrm{V}}=\mathrm{v}_{1} / \mathrm{v}_{2}=7
\end{aligned}
$$

$$
\text { a) } \begin{aligned}
\mathrm{q}_{23} & =(2 / 3) \times 2100 \\
& =1400 \mathrm{~kJ} / \mathrm{kg} ; \\
\mathrm{q}_{34} & =2100 / 3=700 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

b) $\quad \mathrm{P}_{2}=\mathrm{P}_{1}\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{\mathrm{k}}=90(9)^{1.4}=1951 \mathrm{kPa}$

$$
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{\mathrm{k}-1}=293.15(9)^{0.4}=706 \mathrm{~K}
$$

$$
\mathrm{T}_{3}=\mathrm{T}_{2}+\mathrm{q}_{23} / \mathrm{C}_{\mathrm{V} 0}=706+1400 / 0.717=\mathbf{2 6 6 0} \mathbf{K}
$$

$$
\mathrm{P}_{3}=\mathrm{P}_{2} \mathrm{~T}_{3} / \mathrm{T}_{2}=1951(2660 / 706)=\mathbf{7 3 5 0 . 8} \mathbf{k P a}=\mathrm{P}_{4}
$$

$$
\mathrm{T}_{4}=\mathrm{T}_{3}+\mathrm{q}_{34} / \mathrm{C}_{\mathrm{P} 0}=2660+700 / 1.004=3357 \mathrm{~K}
$$

$$
\frac{\mathrm{v}_{5}}{\mathrm{v}_{4}}=\frac{\mathrm{v}_{1}}{\mathrm{v}_{4}}=\frac{\mathrm{P}_{4}}{\mathrm{P}_{1}} \times \frac{\mathrm{T}_{1}}{\mathrm{~T}_{4}}=\frac{7350.8}{90} \times \frac{293.15}{3357}=7.131
$$

$$
\mathrm{T}_{5}=\mathrm{T}_{4}\left(\mathrm{v}_{4} / \mathrm{v}_{5}\right)^{\mathrm{k}-1}=3357(1 / 7.131)^{0.4}=1530 \mathrm{~K}
$$

$$
\mathrm{q}_{\mathrm{L}}=\mathrm{C}_{\mathrm{V} 0}\left(\mathrm{~T}_{5}-\mathrm{T}_{1}\right)=0.717(1530-293.15)=886.2 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\eta_{\mathrm{TH}}=1-\mathrm{q}_{\mathrm{L}} / \mathrm{q}_{\mathrm{H}}=1-886.2 / 2100=\mathbf{0 . 5 7 8}
$$

Std. Otto Cycle: $\quad \eta_{\text {TH }}=1-(9)^{-0.4}=\mathbf{0 . 5 8 5}$, small difference
12.86

A diesel engine has a compression ratio of $20: 1$ with an inlet of $95 \mathrm{kPa}, 290 \mathrm{~K}$, state 1 , with volume 0.5 L . The maximum cycle temperature is 1800 K . Find the maximum pressure, the net specific work and the thermal efficiency.
Solution:
Compression process (isentropic) from Eqs.8.33-34

$$
\begin{aligned}
& \mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{\mathrm{k}-1}=290 \times 20^{0.4}=961 \mathrm{~K} \\
& \mathrm{P}_{2}=95 \times(20)^{1.4}=6297.5 \mathrm{kPa} ; \\
& \mathrm{v}_{2}=\mathrm{v}_{1} / 20=\mathrm{RT}_{1} /\left(20 \mathrm{P}_{1}\right)=0.043805 \mathrm{~m}^{3} / \mathrm{kg} \\
& -{ }_{1} \mathrm{w}_{2}=\mathrm{u}_{2}-\mathrm{u}_{1} \approx \mathrm{C}_{\mathrm{vo}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=0.717(961-290)=481.1 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Combustion at constant P which is the maximum presssure

$$
\begin{aligned}
\mathrm{P}_{3} & =\mathrm{P}_{2}=\mathbf{6 2 9 8} \mathbf{~ k P a} ; \\
\mathrm{v}_{3} & =\mathrm{v}_{2} \mathrm{~T}_{3} / \mathrm{T}_{2}=0.043805 \times 1800 / 961=0.08205 \mathrm{~m}^{3} / \mathrm{kg} \\
{ }_{2} \mathrm{~W}_{3} & =\mathrm{P}\left(\mathrm{v}_{3}-\mathrm{v}_{2}\right)=6298 \times(0.08215-0.043805)=241.5 \mathrm{~kJ} / \mathrm{kg} \\
{ }_{2} \mathrm{q}_{3} & =\mathrm{u}_{3}-\mathrm{u}_{2}+{ }_{2} \mathrm{~W}_{3}=\mathrm{h}_{3}-\mathrm{h}_{2}=\mathrm{C}_{\mathrm{po}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right) \\
& =1.004(1800-961)=842.4 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Expansion process (isentropic) from Eq.8.33

$$
\begin{aligned}
& \mathrm{T}_{4}=\mathrm{T}_{3}\left(\mathrm{v}_{3} / \mathrm{v}_{4}\right)^{0.4}=1800(0.08205 / 0.8761)^{0.4}=698 \mathrm{~K} \\
& 3^{\mathrm{W}_{4}}=\mathrm{u}_{3}-\mathrm{u}_{4} \approx \mathrm{C}_{\mathrm{vo}}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right)=0.717(1800-698)=790.1 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Cycle net work and efficiency

$$
\begin{aligned}
& \mathrm{w}_{\text {net }}={ }_{2} \mathrm{w}_{3}+{ }_{3} \mathrm{w}_{4}+{ }_{1} \mathrm{w}_{2}=241.5+790.1-481.1=\mathbf{5 5 0 . 5} \mathbf{~ k J} / \mathbf{k g} \\
& \eta=\mathrm{w}_{\text {net }} / \mathrm{q}_{\mathrm{H}}=550.5 / 842.4=\mathbf{0 . 6 5 3}
\end{aligned}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

At the beginning of compression in a diesel cycle $T=300 \mathrm{~K}, P=200 \mathrm{kPa}$ and after combustion (heat addition) is complete $T=1500 \mathrm{~K}$ and $P=7.0 \mathrm{MPa}$. Find the compression ratio, the thermal efficiency and the mean effective pressure.
Solution:
Standard Diesel cycle. See P-v and T-s diagrams for state numbers.
Compression process (isentropic) from Eqs.8.33-8.34

$$
\begin{aligned}
& \mathrm{P}_{2}=\mathrm{P}_{3}=7000 \mathrm{kPa} \Rightarrow \mathrm{v}_{1} / \mathrm{v}_{2}=\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)^{1 / \mathrm{k}}=(7000 / 200)^{0.7143}=\mathbf{1 2 . 6 7} \\
& \mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)^{(\mathrm{k}-1) / \mathrm{k}}=300(7000 / 200)^{0.2857}=828.4 \mathrm{~K}
\end{aligned}
$$

Expansion process (isentropic) first get the volume ratios

$$
\begin{aligned}
& v_{3} / v_{2}=T_{3} / T_{2}=1500 / 828.4=1.81 \\
& v_{4} / v_{3}=v_{1} / v_{3}=\left(v_{1} / v_{2}\right)\left(v_{2} / v_{3}\right)=12.67 / 1.81=7
\end{aligned}
$$

The exhaust temperature follows from Eq.8.33

$$
\begin{aligned}
& \mathrm{T}_{4}=\mathrm{T}_{3}\left(\mathrm{v}_{3} / \mathrm{v}_{4}\right)^{\mathrm{k}-1}=1500(1 / 7)^{0.4}=688.7 \mathrm{~K} \\
& \mathrm{q}_{\mathrm{L}}=\mathrm{C}_{\mathrm{vo}}\left(\mathrm{~T}_{4}-\mathrm{T}_{1}\right)=0.717(688.7-300)=278.5 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{q}_{\mathrm{H}}=\mathrm{h}_{3}-\mathrm{h}_{2} \approx \mathrm{C}_{\mathrm{po}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)=1.004(1500-828.4)=674 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Overall performance

$$
\begin{aligned}
& \eta=1-q_{L} / q_{H}=1-278.5 / 674=\mathbf{0 . 5 8 7} \\
& w_{\text {net }}=q_{\text {net }}=q_{H}-q_{L}=674-278.5=395.5 \mathrm{~kJ} / \mathrm{kg} \\
& v_{\max }=v_{1}=R T_{1} / P_{1}=0.287 \times 300 / 200=0.4305 \mathrm{~m}^{3} / \mathrm{kg} \\
& v_{\min }=v_{\max } /\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)=0.4305 / 12.67=0.034 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{P}_{\text {meff }}=\frac{\mathrm{w}_{\text {net }}}{\mathrm{v}_{\text {max }}-\mathrm{v}_{\min }}=395.5 /(0.4305-0.034)=\mathbf{9 9 7} \mathbf{~ k P a}
\end{aligned}
$$

Remark: This is a too low compression ratio for a practical diesel cycle.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

Consider an ideal air-standard diesel cycle in which the state before the compression process is $95 \mathrm{kPa}, 290 \mathrm{~K}$, and the compression ratio is 20 . Find the thermal efficiency for a maximum temperature of 2200 K

Solution:
Diesel cycle: $\quad P_{1}=95 \mathrm{kPa}, \quad \mathrm{T}_{1}=290 \mathrm{~K}, \quad \mathrm{CR}=\mathrm{v}_{1} / \mathrm{v}_{2}=20$,

$$
\mathrm{v}_{1}=0.287 \times 290 / 95=0.8761 \mathrm{~m}^{3} / \mathrm{kg}=\mathrm{v}_{4}=\mathrm{CR}_{2}
$$

Compression process (isentropic) from Eqs.8.33-34

$$
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{\mathrm{k}-1}=290 \times 20^{0.4}=961.2 \mathrm{~K}
$$

Combustion at constant P which is the maximum pressure

$$
\mathrm{v}_{3}=\mathrm{v}_{2} \mathrm{~T}_{3} / \mathrm{T}_{2}=\frac{0.8761}{20} \times \frac{2200}{961.2}=0.10026 \mathrm{~m}^{3} / \mathrm{kg}
$$

Expansion process (isentropic) from Eq.8.33

$$
\mathrm{T}_{4}=\mathrm{T}_{3}\left(\mathrm{v}_{3} / \mathrm{v}_{4}\right)^{0.4}=2200(0.10026 / 0.8761)^{0.4}=924.4 \mathrm{~K}
$$

Cycle net work and efficiency

$$
\eta_{\mathrm{TH}}=1-\frac{\mathrm{T}_{4}-\mathrm{T}_{1}}{\mathrm{k}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)}=1-\frac{924.4-290}{1.4(2200-961.2)}=\mathbf{0 . 6 3 4}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

12.116

A Brayton cycle has a compression ratio of $15: 1$ with a high temperature of 1600 K and an inlet state of $290 \mathrm{~K}, 100 \mathrm{kPa}$. Use cold air properties to find the specific net work output and the second law efficiency if we neglect the "value" of the exhaust flow.

Brayton cycle so this means:
Minimum T: $\quad \mathrm{T}_{1}=290 \mathrm{~K}$
Maximum T: $\quad \mathrm{T}_{3}=1600 \mathrm{~K}$
Pressure ratio: $\quad \mathrm{P}_{2} / \mathrm{P}_{1}=15$
Solve using constant $\mathrm{C}_{\mathrm{P} 0}$

Compression in compressor: $\quad \mathrm{s}_{2}=\mathrm{s}_{1} \Rightarrow$ Implemented in Eq.8.32

$$
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=290(15)^{0.286}=628.65 \mathrm{~K}
$$

Energy input is from the combustor

$$
\mathrm{q}_{\mathrm{H}}=\mathrm{h}_{3}-\mathrm{h}_{2}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)=1.004(1600-628.65)=975.2 \mathrm{~kJ} / \mathrm{kg}
$$

Do the overall cycle efficiency and net work

$$
\begin{aligned}
& \eta=\frac{\dot{\mathrm{W}}_{\text {net }}}{\dot{\mathrm{Q}}_{\mathrm{H}}}=\frac{\mathrm{w}_{\text {net }}}{\mathrm{q}_{\mathrm{H}}}=1-\mathrm{r}_{\mathrm{p}}^{-(\mathrm{k}-1) / \mathrm{k}}=1-15^{-0.4 / 1.4}=\mathbf{0 . 5 3 8 7} \\
& \mathrm{w}_{\mathrm{NET}}=\eta \mathrm{q}_{\mathrm{H}}=0.5387 \times 975.2=525.34 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Notice the q_{H} does not come at a single T so neglecting external irreversibility we get

$$
\begin{aligned}
\Phi_{\mathrm{qH}} & =\text { increase in flow exergy }=\psi_{3}-\psi_{2}=\mathrm{h}_{3}-\mathrm{h}_{2}-\mathrm{T}_{\mathrm{o}}\left(\mathrm{~s}_{3}-\mathrm{s}_{2}\right) \\
& =\mathrm{q}_{\mathrm{H}}-\mathrm{T}_{\mathrm{o}} \mathrm{C}_{\mathrm{P}} \ln \left(\mathrm{~T}_{3} / \mathrm{T}_{2}\right)=975.2-298.15 \times 1.004 \ln \left(\frac{1600}{628.65}\right) \\
& =695.56 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\eta_{\text {II }}=\frac{w_{\text {net }}}{\psi_{3}-\psi_{2}}=\frac{525.34}{695.56}=\mathbf{0 . 7 5 5}
$$

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

Reconsider the previous problem and find the second law efficiency if you do consider the "value" of the exhaust flow.

Brayton cycle so this means:
Minimum T: $\quad \mathrm{T}_{1}=290 \mathrm{~K}$
Maximum T: $\quad \mathrm{T}_{3}=1600 \mathrm{~K}$
Pressure ratio: $\quad \mathrm{P}_{2} / \mathrm{P}_{1}=15$
Solve using constant $\mathrm{C}_{\mathrm{P} 0}$

Compression in compressor: $\quad \mathrm{s}_{2}=\mathrm{s}_{1} \Rightarrow$ Implemented in Eq.8.32

$$
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=290(15)^{0.286}=628.65 \mathrm{~K}
$$

Energy input is from the combustor

$$
\mathrm{q}_{\mathrm{H}}=\mathrm{h}_{3}-\mathrm{h}_{2}=\mathrm{C}_{\mathrm{P} 0}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)=1.004(1600-628.65)=975.2 \mathrm{~kJ} / \mathrm{kg}
$$

Do the overall cycle thermal efficiency and net work

$$
\begin{aligned}
& \eta=\frac{\dot{\mathrm{W}}_{\text {net }}}{\dot{\mathrm{Q}}_{\mathrm{H}}}=\frac{\mathrm{w}_{\text {net }}}{\mathrm{q}_{\mathrm{H}}}=1-\mathrm{r}_{\mathrm{p}}^{-(\mathrm{k}-1) / \mathrm{k}}=1-15^{-0.4 / 1.4}=\mathbf{0 . 5 3 8 7} \\
& \mathrm{w}_{\mathrm{NET}}=\eta \mathrm{q}_{\mathrm{H}}=0.5387 \times 975.2=525.34 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Notice the q_{H} does not come at a single T so neglecting external irreversibility we get

$$
\begin{aligned}
\Phi_{\mathrm{qH}} & =\text { increase in flow exergy }=\psi_{3}-\psi_{2}=\mathrm{h}_{3}-\mathrm{h}_{2}-\mathrm{T}_{\mathrm{o}}\left(\mathrm{~s}_{3}-\mathrm{s}_{2}\right) \\
& =\mathrm{q}_{\mathrm{H}}-\mathrm{T}_{\mathrm{o}} \mathrm{C}_{\mathrm{P}} \ln \left(\mathrm{~T}_{3} / \mathrm{T}_{2}\right)=975.2-298.15 \times 1.004 \ln \left(\frac{1600}{628.65}\right) \\
& =695.56 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~T}_{4} & =\mathrm{T}_{3}\left(\mathrm{P}_{4} / \mathrm{P}_{3}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=1600(1 / 15)^{0.286}=738 \mathrm{~K} \\
\Phi_{\mathrm{qL}} & =\psi_{4}-\psi_{1}=\mathrm{h}_{4}-\mathrm{h}_{1}-\mathrm{T}_{\mathrm{o}}\left(\mathrm{~s}_{4}-\mathrm{s}_{1}\right)=\mathrm{C}_{\mathrm{P}}\left(\mathrm{~T}_{4}-\mathrm{T}_{1}\right)-\mathrm{T}_{\mathrm{o}} \mathrm{C}_{\mathrm{P}} \ln \frac{\mathrm{~T}_{4}}{\mathrm{~T}_{1}} \\
& =1.004\left[738-290-298 \ln \left(\frac{738}{290}\right)\right]=170.33 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\eta_{\mathrm{II}}=\frac{\mathrm{w}_{\mathrm{net}}}{\Phi_{\mathrm{qH}}-\Phi_{\mathrm{qL}}}=\frac{525.34}{695.56-170.33}=\mathbf{1}
$$

Why is it 1 ?, the cycle is reversible so we could have said that right away.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which this textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

