Orthogonality of Cosines and Sines
M.M. Yovanovich
ORTHOGTRIG1.MWS
Orthogonality of Cosines and Sines.
Orthogonality of the cosine and sine functions
and
, and
and
on the finite interval from
to
.
when
and
are different, otherwise
is non-zero for all
.
when
and
are different, otherwise
is non-zero for all
.
The dimensionless parameter
will be used. The interval becomes
for
.
The
and
are roots of a characteristic equation such as
when the eigenfunctions are
or
.
> restart: with(linalg):
Warning, new definition for norm
Warning, new definition for trace
Define orthogonality relations for the cosines and sines. Let the interval lie between
and
> orthogcos:= (m,n)-> int(cos(delta[m]*xi)*cos(delta[n]*xi), xi=0..1);
> orthogsin:= (m,n)-> int(sin(delta[m]*xi)*sin(delta[n]*xi), xi=0..1);
Define the characteristic equation with parameter
for the eigenfunctions
.
> ce:= delta*sin(delta) -Bi*cos(delta);
Set the parameter (say Bi=1) and calculate the roots(eigenvalues) of the characteristic equation,
> Bi:= 1.:
> rtsm:= [seq(fsolve(ce, delta=(n-1)*Pi..(2*n-1)*Pi/2), n=1..10)]:
> rtsn:= [seq(fsolve(ce, delta=(n-1)*Pi..(2*n-1)*Pi/2), n=1..10)]:
Show the orthogonality property of the eigenfunctions
.
>
matcos:= [seq([seq(evalf(subs(delta[i] = rtsm[i],
delta[j] = rtsn[j], round(10^(8)*orthogcos(i,j))/10^(8))), j = 1..5)],
i = 1..5)]:
Show the 5 by 5 matrix.
> evalf(matrix(matcos));
Now we see that all entries of the matrix except for the main diagonal are negligible. This proves the orthogonality property of the cosine functions
. This property is valid for all eigenvalues which are roots of the characteristic equation for all values of the parameter
. Try some other value of
.
Another characteristic equation with parameter
, and eigenfunctions
.
>
Bi:= 'Bi':
Bi:= 2.5:
ce2:= delta*cos(delta) + Bi*sin(delta);
Set the parameter (say Bi=2.5) and calculate the roots (eigenvalues) of the characteristic equation.
For
, the eigenvalues are the roots of
, i.e.
, for
, etc. For
, the eigenvalues are the roots of
, i.e.
, for
, etc. The roots are found in the intervals from
to
for
, etc.
> rtsm:= [seq(fsolve(ce2, delta=(2*n-1)*Pi/2..n*Pi), n=1..10)]:
> rtsn:= [seq(fsolve(ce2, delta=(2*n-1)*Pi/2..n*Pi), n=1..10)]:
Show the orthogonality property of the eigenfunctions
.
>
matsin:= [seq([seq(evalf(subs(delta[i] = rtsm[i],
delta[j] = rtsn[j], round(10^(8)*orthogsin(i,j))/10^(8))), j = 1..5)],
i = 1..5)]:
Show the 5 by 5 matrix.
> evalf(matrix(matsin));
Now we see that all entries of the matrix except for the main diagonal are negligible. This proves the orthogonality property of the sine functions
. This property is valid for all eigenvalues which are roots of the characteristic equation for all values of the parameter
. Try some other value of
.