ME 353 Heat Transfer 1
M.M. Yovanovich
FEF96P4.MWS
_________________________________________
Problem 4 of Final Examination, December 9, 1996.
See the problem statement.
_________________________________________
>
restart:
Specify the system parameters.
>
case1:=
(q = 600, Tmi = 27, m = 3*10^(- 4),
W1 = 4/1000, W2 = 16/1000, L = 1);
Specify the air properties.
>
airprops:=
(k = 0.0263, cp = 1007, mu = 184.6*10^(- 7), Pr = 0.707);
Reynolds number based on hydraulic diameter.
> ReDh:= rho*U*Dh/mu;
Since the mass density is unknown, but the mass flow rate is given,
replace the product rho*U by m/A.
> ReDh:= subs(rho = m/(A*U), ReDh);
The hydraulic diameter, flow area and the perimeter.
> Dh:= 4*A/P;
> A:= W1*W2; #Flow area.
> P:= 2*(W1 + W2); #Perimeter.
Calculate the Reynolds number.
>
ReDh1:= evalf(subs(case1, airprops, ReDh), 6);
#The flow is laminar.
Heat transfer rate into the fluid due to uniform heat flux over all surfaces.
> Qin:= q*S; S:= 2*(W1 + W2)*L;
Heat transfer to the fluid.
> Qfluid:= m*cp*(Tmo - Tmi);
Solve for the bulk outlet temperature.
> Tmo:= solve(Qin = Qfluid, Tmo);
The above relationship can be written in the simpler form.
> Tmo:= Tmi + q*2*(W1 + W2)*L/(m*cp);
Compute the bulk outlet temperature.
> Tmo1:= evalf(subs(case1, airprops, Tmo), 4);
The surface temperature at the duct outlet can be determined from
the relation:
> Tso:= Tmo + q/h;
and the heat transfer coefficient can be obtained from the Nusselt number.
> h:= k*NuDh/Dh;
Compute the heat transfer coefficient.
The Nusselt number for a rectangular duct with aspect ratio of 4 is
NuDh = 5.33.
>
h1:=
evalf(subs(NuDh = 5.33, case1, airprops, h), 4)*W/m^2/K;
Calculate the duct surface temperature at the duct outlet.
>
Tso1:=
evalf(subs(NuDh = 5.33, case1, airprops, Tso), 4);
Summary of the results.
> `Reynolds number`:= ReDh1;
> `Tbulk outlet`:= Tmo1*C;
> `Tsurface outlet`:= Tso1*C;
> `heat transfer coeff`:= h1;