ME Heat Transfer 1

M.M. Yovanovich

FEF97P4.MWS

Solution for Problem 4 of Final Examination, Fall 1997.

Assumptions:

1) Steady-state.

2) Constant properties.

3) Gray, diffuse isothermal surfaces.

4) Laminar natural convection inside the annular space.

> restart:

System parameters

> sys:= (Di = 70/1000, Do = 80/1000, epsilon1 = 0.9, epsilon2 = 0.1,
Ti = 400, To = 300, g = 9.81, beta = 1/(350), sigma = 5.67e-8);

[Maple Math]
[Maple Math]

Air properties at 350 K

> airprop:= (rho = 0.9950, cp = 1.009, mu = 208.2e-7, nu = 20.92e-6,
alpha = 29.9e-6, kf = 0.030, Pr = 0.700);

[Maple Math]
[Maple Math]

Convective correlation equation

> NuDi:= .74*(Pr/(0.861 + Pr))^(1/4)/
(1 + (Di/Do)^(7/5))^(5/4)*RaDi^(1/4);

[Maple Math]

> RaDi:= g*beta*(Ti - To)*Di^3/(alpha*nu);

[Maple Math]

Calculation of convective heat transfer rate.

> Qconv:= h*Ai*(Ti - To); Ai:= Pi*Di^2;

[Maple Math]

[Maple Math]

> RaDi1:= evalf(subs(sys, airprop, RaDi), 4);

[Maple Math]

> NuDi1:= evalf(subs(sys, airprop, NuDi), 4);

[Maple Math]

> h1:=
evalf(subs(sys, airprop, NuDi = NuDi1, kf*NuDi/Di), 4);

[Maple Math]

> Qconv1:= evalf(subs(sys, airprop, h = h1, Qconv), 4);

[Maple Math]

Calculation of radiative heat transfer rate

> Q12:= (Eb1 - Eb2)/(Rs1 + R12 + Rs2);
Eb1:= sigma*T1^4; Eb2:= sigma*T2^4;
Rs1:= (1 - epsilon1)/(A1*epsilon1);
Rs2:= (1 - epsilon2)/(A2*epsilon2);
R12:= 1/(A1*F12);
A1:= Pi*Di^2; A2:= Pi*Do^2; F12:= 1;

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

> Qrad1:= evalf(subs(T1 = Ti, T2 = To, sys, Q12), 4);

[Maple Math]

Conductive heat transfer rate

> Qcond:= k*S*(T1 - T2);

[Maple Math]

> S:= (4*Pi)/(1/(D1/2) - 1/(D2/2));

[Maple Math]

> Qcond1:=
evalf(subs(T1 = Ti, T2 = To, D1 = Di, D2 = Do, k = kf, sys, airprop, Qcond), 4);

[Maple Math]

Summary of input and output parameters.

> `system parameters` = sys;

[Maple Math]
[Maple Math]
[Maple Math]

> Rayleigh[Di] = RaDi1;
Nusselt[Di] = NuDi1;
h = h1*W/m^2/K;
Q[convection] = Qconv1*W;

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

> Q[radiation] = Qrad1*W;

[Maple Math]

> Q[conduction] = Qcond1*W;

[Maple Math]

Since the conduction heat transfer rate is larger than the convection heat transfer

rate, the heat transfer across the annular space is the sum of the conduction and the

radiation components. Therefore, Qtotal = 12.47 W.