ME 353 Heat Transfer 1
M.M. Yovanovich
P3MT96.MS
Problem 3 of the Midterm Exam, October, 1996.
__________________________________________
The system resistance consists of several component
resistances:
1) contact resistance: Rcont = 1/(hc Abase);
2) base material resistance: Rbase = L/(k Abase);
3) fin array resistance: Rfins = Rfin/Nf;
4) bare unfinned surface resistance: Rbare = 1/(h Abare).
The input parameters are:
(a) fin diameter: Dp = 1.5 mm; fin length: Lp = 50 mm;
(b) base dimensions: 40 mm by 40 mm;
(c) thermal conductivity of base and fins: k = 100 W/(m K);
(d) contact conductance: hc = 500 W/(m^2 K);
(e) film coefficient: h = 120 W/(m^2 K);
(f) case temperature and fluid temperature: Tcase = 95 C,
Tf = 35 C.
Compute the system heat transfer rate.
Compute all component and system resistances.
Steady-state, constant properties, radiation is negligible.
____________________________________________
> restart:
a) Biot number for the pin fins.
> Bi:= 'Bi':
> Bi:= h*Dp/(2*k);
The system resistance.
>
Rsystem:=
Rcont + Rbase + 1/(1/Rfins + 1/Rbare);
The heat tranfer rate through the system.
> Qsystem:= (Tcase - Tf)/Rsystem;
> Rcont:= 1/(hc*Abase);
> Rbase:= L/(k*Abase);
> Rfins:= Rfin/Nf;
> Rbare:= 1/(h*Abare);
>
Abare:=
Abase - Nf*(Pi/4)*Dp^2; Abase:= w^2;
>
m:= sqrt((h*P)/(k*Af));
mLp:= m*Lp;
P:= Pi*Dp;
Af:= (Pi/4)*Dp^2;
>
sys:=
(w = 40/1000, Lp = 3/1000, Dp = 1.5/1000,
L = 50/1000, k = 100, Nf = 50, Tf = 35,
Tcase = 95, h = 120, hc = 500);
a) Calculate the fin Biot number and the parameter m*L
to determine whether the fin is very long.
>
Bi:= evalf(subs(sys, Bi), 5);
#The temperature along fins is 1D.
> mL:= evalf(subs(sys, m*L), 4);
Since the parameter mL is greater than 2.65, the fin can
be modeled as though it were "infinitely" long.
Therefore the fin resistance is Rfin = 1/(h*P*k*Af)^(1/2).
> `Rfin`:= 1/sqrt(h*P*k*Af);
c) Calculate the component and system resistances,
and the heat transfer rate through the system.
> R[cont]:= evalf(subs(sys, Rcont), 5)*K/W;
> R[base]:= evalf(subs(sys, Rbase), 5)*K/W;
> R[fin]:= evalf(subs(sys, Rfin), 5)*K/W;
> R[bare]:= evalf(subs(sys, Rbare), 5)*K/W;
> R[system]:= evalf(subs(sys, Rsystem), 4)*K/W;
> Q[system]:= evalf(subs(sys, Qsystem), 4)*W;
>
The heat sink is capable of dissipating the heat from the Pentium.