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ME 353 M.M. Yovanovich

Week 11

Lecture 1

ME 353 Heat Transfer Lab begins on Monday. See signup sheet.
Forced internal laminar and turbulent convection in circular and noncircular
tubes, pipes and ducts.
See handout for de�nitions of local and average Nusselt numbers and other per-
tinent dimensionless parameters.
Discuss hydrodynamic developing length, fully-developed velocity ditribution in
circular tube. Hydraulic diameter Dh for noncircular tubes.
Developing thermal length with fully-developed ow.

Lecture 2

Developing lengths:

xfd;h
D

' 0:05ReD; Hydraulic Length

and
xfd;t
D

' 0:05ReDPr; Thermal Length

When Pr = 1, then xfd;h = xfd;t, approximately.
For turbulent ow the hydrodynamic length is approximately L=D ' 10.
Simple, single tube heat exchanger. Laminar, fully-developed ow in a UWT cir-
cular tube. Wall temperature is Tw(or Ts). The bulk temperature is Tb(or Tm).
The inlet and outlet temperature di�erences are �Ti = Tw � Tb;i and �To =
Tw�Tb;o. Temperature di�erence at arbitrary location x is �T (x) = Tw�Tb(x).
E�ective temperature di�erence over the length L is called the Log Mean Tem-
perature Di�erence (LMTD) de�ned as
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Temperature rise in heat exchanger
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where P = �D is the perimeter of the circular tube, _m = � �UA is the mass ow
rate through the tube of cross-section A = �D2=4, and �h is the average value
of the heat transfer coe�cient over the length L. The heat transfer coe�cient
depends on position because both the wall heat ux qw(x) and the local tem-
perature di�erence �T (x) are variables. When x = L, Tb(x = L) = Tb;o. This
relation can be used to solve some interesting problems.
(i) Given the temperatures: Tw; Tb;i; Tb;o and D; _m; cp; �h, �nd L.
(ii) Given the temperatures: Tw; Tb;i; Tb;o and D;L; _m; cp, �nd �h.
(ii) Given the temperatures: Tw; Tb;i and D;L; _m; cp; �h, �nd Tb;o.

Heat transfer rate to the uid is obtained from

Q = _mcp (Tb;o � Tb;i) = �cp �UA (Tb;o � Tb;i)

Complete review of the area-average Nusselt number relations for fully-developed
hydraulic, thermally developing ow conditions developed by Shah and London
(1975): Num;UWT and Num;UWF as a function of the dimensionless axial posi-
tion xstar = x=(DReDPr). For thermally fully-developed ow the asymptotic
values for the circular tube are: Num;UWT = 3:656 and Num;UWF = 4:354.
See Table 8.1 on page 450 for values of NuDh

= hDh=k for UWT and UWF
conditions for other noncircular tubes (pipes, ducts) such as rectangular ducts.

Turbulent, fully-developed ow ReD > 2300. Correlation equation, Eq. (8.63)
can be used

NuD =
(f=8) (ReD � 1000) Pr

1 + 12:7(f=8)1=2 (Pr2=3 � 1)
;

L

D
� 10

for 0:5 < Pr < 2000 and 3000 � ReD � 5� 106 with Eq. (8.21)

f = (0:790 lnReD � 1:64)�2

See Table 8.4 on page 460 for other relationships.
For noncircular tubes, pipes and ducts use the relations for the circular tube,
but replace the tube diameter with the hydraulic diameter of the given cross-
section:

Dh =
4A

P

Lecture 3

External natural convection heat transfer correlations. De�nitions of dimen-
sionless groups such as local and average Nusselt Nu, Grashof Gr and Rayleigh
Ra numbers.
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Temperature and velocity distributions across thermal and hydrodynamic bound-
ary layers adjacent to a vertical isothermal plate in contact with a stagnant uid
of large extent.
Show Nu � Ra plot for arbitrary geometry over the Rayleigh number range:
0 � RaL < 1012. Discuss the di�erent regions: pure conduction, laminar bound-
ary layer ow, turbulent boundary layer ow and the transitions.
Present general correlation equation for isothermal convex geometries:

NuL = S?L + F (Pr)GLRa
1=4
L

where S?L is the dimensionless shape factor for pure conduction. The Prandtl
number function is de�ned as

F (Pr) =
0:670

[1 + (0:5=Pr)9=16]
4=9

; 0 � Pr <1

Note the text uses 0:492 in place of 0:5. For air Pr = 0:71, the Prandtl number
function gives F (Pr = 0:71) = 0:513.
Di�erent length scales have been proposed for di�erent geometries:
� Vertical plate: L = L, the plate height parallel to the gravity vector.
� Sphere: L = a, the sphere radius or L = D, the sphere diameter which is
used most frequently.
� Finite circular cylinder of length L and diameter D:
�vertical orientation: L = L
�horizontal orientation: L = D

Yovanovich (1987) proposed the use of the square root of the total active surface
area: L =

p
A. For the �nite circular cylinder this gives:

L =
p
A =

q
�DL + 2�D2=4

where �DL is the side surface area and 2�D2=4 represents the two end surface
areas. This length scale contains the two length scales used by other researchers.
It does not change with the orientation.
When L =

p
A is used, then 3:19 � S?p

A
� 4:4 lies in a narrow range. Also the

body gravity-function now lies in a narrow range as shown in Table 1.

The body-gravity function GpA is a relatively weak function of body shape and
orientation.

See the handout notes for details of the body-gravity function as applied to:
� Cuboids
� Horizontal rectangular plates (both sides active)
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Table 1: Short Table of Body-Gravity Functions

Geometry Orientation GpA
Sphere 1.014
Cylinder (L=D = 1) Vertical Axis 0.967
Cylinder (L=D = 1) Horizontal Axis 1.051
Cube Horizontal 0.984
Cube On Edge 1.080
Cube On Corner 1.091

� Vertical rectangular plates (both sides active)
� Long horizontal square prisms with active ends
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