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ME 353 M.M. Yovanovich

Week 2

Lecture 1

Solutions to problems are available in Engineering Photocopy Center.
First makeup lecture: Thursday, 8:30 AM, CPH 3385.
Discuss the ME 353 Website. Calendar, Assigments, Projects, Exams, Lectures,
Notes, Maple, Calculators and Links.

Survey students regarding experience with Spread Sheets and Computer Algebra
Systems: Excel, QuattroPro, Lotus 1,2,3 andMathcad, Matlab, Maple,
Mathematica, Macsyma.

Continued discuss of radiation; Stefan-Boltzmann Law of Radiation; thermal
circuit; de�nition of radiative conductance, hr; Q12 = hrA1(T1 � T2);

general relation: hr =
�(T 2

1
+ T 2

2
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A1Rrad
;

special case: A2 >> A1; F12 = 1; hr = �1�(T 2

1
+ T 2

2
)(T1 + T2) ;

compute hr for black-body radiation: �1 = 1; T2 = 300K, and �T = (T1�T2) =
1; 10; 100K; see Web Site;
see Example 1.5 for system with conduction, convection and radiation; see cor-
responding Maple worksheet on Web Site.

Lecture 2

Read Chapter 2: Sections: 2.1-2.4.
Fourier's Rate Equation: ~q = �krT
Heat ux vector: ~q =~i q00

x +~j q00

y +
~k q00

z

Temperature gradient: ~i @T=@x+~j @T=@y + ~k @T=@z
Heat ux components: q00

x = �k @T=@x; q
00

y = �k @T=@y; q
00

z = �k @T=@z

Thermal conductivity: k = k(T ); [W=(m �K)]; See Figures 2.4-2.7 for values for
various substances such as gases, liquids, non-metals, alloys and pure metals.
Thermal di�usivity: � = k=(�cp) [m2=s] is important in transient conduction.

Heat Di�usion Equations: Based on



Conduction
Energy generation: _Eg = _qdV

Energy storage: _Est = �cp
@T
@t

dV

Select di�erential control volume: dV in
� cartesian coordinates: (x; y; z)
� cylindrical coordinates: (r; �; z)
� spherical coordinates: (r; �; �)

Apply conservation of energy principle to dV to get Heat Conduction Equation.
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This gives the general non-linear Conduction Equation in vector notation:

r � (krT ) + _q = �cp
@T

@t

For constant thermal conductivity equation becomes:

r2T +
_q

k
=

1

�

@T

@t

Special cases:
1) Steady-state: (@T=@t = 0), source free ( _q = 0)

r2T = 0; Laplace equation

2) Steady-state: (@T=@t = 0), with sources ( _q > 0)

r2T = �
_q

k
; Poisson equation

3) Transient: (@T=@t 6= 0), source free ( _q = 0)

r2T =
1

�

@T

@t
; Di�usion equation

IC (Initial Condition) and BCs (Boundary Conditions):
1 IC
2 BCs for 1D Conduction; eg, T = T (x; t)
4 BCs for 2D Conduction; eg, T = T (x; y; t)
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6 BCs for 3D Conduction; eg, T = T (x; y; z; t)

Three types of BCs for t > 0:
1) Dirichlet (BC of First Kind): Temperature is prescribed on the boundary.
2) Neumann (BC of Second Kind): Temperature gradient is prescribed on the
boundary.
3) Robin (BC of Third Kind): Linear superposition of temperature and its gra-
dient with appropriate coe�cients are prescribed on the boundary.

See text for derivation of general di�erential equation, and di�erential equations
in the three coordinate systems: Cartesian, cylindrical and spherical.

Lecture 3

Read Chapter 3: Sections: 3.1-3.7.
Solutions of one-dimensional Laplace and Poisson equations in Cartesian, cylin-
drical and spherical coordinates; applications of the three types of boundary
conditions; three methods to �nd thermal resistances of solids R: (i) full solu-
tion of governing equation with Dirichlet boundary conditions; (ii) integration
of Fourier equation of conduction after separation of variables; (iii) physical
approach; text discusses the �rst two methods.

Lecture 4 (Makeup Lecture 1)
Solutions of 1D Laplace equation r2T = 0.
The Laplacian operator in Cartesian coordinates:

r2 = r �r = (~i @T=@x+~j @T=@y+~k @T=@z) � (~i @T=@x+~j @T=@y+~k @T=@z)

Therefore,

r2 =
@2

@x2
+

@2

@y2
+

@2

@z2

�
1

m2

�

Thermal resistance: R, and shape factor: S = 1=(kR)
� plane wall: (0 � x � L) where A = constant,
� long cylindrical shell of length L >> r2 > r1 with (r1 � r � r2) where
A(r) = 2�rL,
� spherical shell: (r1 � r � r2) where A(r) = 4�r2.

Physical approach based on dR = dr=(kA(r)) and R =
R
dR;

� plane wall: R = L=(kA) ; S = A=L ;
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� cylindrical shell: R = ln(r2=r1)=(2�Lk) ; S = 2�L= ln(r2=r1) ;

� spherical shell: R = 1=(4�k)(1=r1 � 1=r2) ; S = 4�=(1=r1 � 1=r2) ;

special case: isolated sphere of radius r1 in an in�nite domain r2 ! 1 of

conductivity k: R = 1=(4�kr1) ; S = 4�r1 ;

see Table 3.3 for summary of one-dimensional solutions, in plane wall, cylindrical
shell and spherical shell.

Example of compound cylinder: a � r � b of thermal conductivity k1 and
b � r � c of thermal conductivity k2 with heat transfer coe�cient h1 on inner
surface A1 = 2�aL and heat transfer coe�cient h2 on outer surface A2 = 2�cL.
There is contact resistance Rc at interface at r = b. There are 5 resistances in
series: 2 solid resistances: Rs1; Rs2, 2 �lm resistances: Rf1; Rf2 and the contact
resistance.
Total resistance of the system: Rtotal = Rf1 +Rs1 +Rc +Rs2 +Rf2 with

Rs1 =
1

2�k1L
ln(b=a)

Rs2 =
1

2�k2L
ln(c=b)

Rf1 =
1

h12�aL

Rf2 =
1

h22�cL

Rc =
1

hc2�bL

Heat transfer rate through system:

Qsys =
(Tf1 � Tf2)

Rtotal
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