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ME 353 M.M. Yovanovich

Week 4

Lecture 1

Hand out Project 1. Due Friday, October 16, 12 Noon.

� Extended surfaces or �ns; temperature is one-dimensional T (x) when Bi =
hte=k < 0:2 where the e�ective �n thickness is de�ned as te = A=P ; where P is
the constant �n perimeter and A is the constant �n conduction area.
See Web Site for derivation of general �n equation and general solution for �ns
with contact conductance, hc, and end cooling, he;
solution �(x) = T (x) � Tf , called the temperature excess, is a function of di-
mensionless parameters: Bic = hcL=k; Bie = heL=k; mL with �n parameter:

m =
q
hP=(kA)

P is the constant �n perimeter and A is the constant �n conduction area.

� Fin resistance: R�n = �b=Q ; �b = Tb � Tf .

� Special cases of the general solution:
(a) perfect contact at �n base: Bic =1 and end cooling: Bie > 0
(b) perfect contact at �n base: Bic =1 and adiabatic end: Bie = 0;
(c) perfect contact and in�nitely long �n.

� Criterion for in�nitely long �n: Lcrit = 2:65=
q
(hP=kA)

When L > Lcrit, model �n as in�nitely long, and when L < Lcrit, model �n as
�nite length with end cooling.

Lecture 2

� Show examples of pin �ns, straight �ns and circular annular �ns from telecom-
munication and microelectronics industries, and automotive industries.
� Sketch the typical straight �n (straight or pin) of length, L, conduction area,
A, and perimeter, P .
� End conditions: (i) contact conductance, hc at the base, x = 0, and (ii) con-
vective cooling at the end, x = L.
� When Bi = hte=k < 0:2, then T (x; y)! T (x).
� Derivation of ODE:
? heat balance on di�erential control volume (CV) dV = Adx:
? conduction into CV at x is dQx = �kAdT=dx,



? conduction rate out of CV at x+ dx is Qx + (dQx=dx) dx,
? convection loss is dQconv = hPdx(T (x)� Tf);
? no sources, steady-state;
? derive governing second-order ordinary di�erential equation.
see section 3.6.2 for derivation of ODE and boundary conditions at x = 0 (per-
fect contact) and x = L (convection cooling).
� See Table 3.4 for summary of solutions.
� See Table 3.5 for summary of �n e�ciencies: �f for various �n types.

Lecture 3

Review of material on Web site for derivation of general �n equation valid for
variable conduction area, A(x), and variable perimeter, P (x); introduce tem-
perature excess: �(x) = T (x) � Tf ; note that d�=dx = dT=dx because Tf is
constant; consider special case: A and P are constants;

�n equation becomes d2�=dx2 �m2� = 0 in 0 < x < L with �n parameter:

m =
q
hP=kA units of m are 1=m;

at the base, x = 0, there is contact conductance, hc, and at the �n end, x = L,
there is convective cooling, he;
boundary conditions of the third kind (Robin) are applied at the �n base and
�n end:
d�(0)=dx = �(hc=k) [�b � �(0)] and d�(L)=dx = �(he=k)�(L) ; �b = Tb � Tf ;

solution is � = C1 coshmx+ C2 sinhmx ;

introduce dimensionless �n parameters: Bic = hcL=k , Bie = heL=k ,

mL =
q
(hP=kA)L

solve for the constants of integration which are:

C1 =
�b

1 + mL�
Bic

and C2 = �
�b �

1 + mL�
Bic

where

� =
mL tanhmL+Bie
mL+Bie tanhmL

obtain �n heat ow rate: Q�n = �kAbd�(0)=dx ; Ab is the base conduction
area.
�n resistance: R�n = �b=Q�n ; see Web Site for development of solution and use

the Javascript Calculator;
perfect contact at base and end cooling:
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Rfin = 1=
p
hPkA tanhmL

perfect contact at �n base and in�nitely long �n:
Rfin = 1=

p
hPkA

�n e�ciency: �f = Q�n=Qideal ;

Qideal corresponds to an ideal �n whose thermal conductivity is in�nitely large
Qideal =

RL
0
hP�b dx+ heA�b = (hPL+ heA)�b

special cases of general solution with perfect contact at �n base:
hc =1 or Bic =1;
three options at the �n end:
(i) end cooling he > 0 or Bie > 0;
(ii) adiabatic end: he = 0 or Bie = 0;

(iii) in�nitely long �n, i.e. L > Lcrit = 2:65=
q
hP=kA;

see Web Site for several special cases.
Longitudinal �ns; pin �ns; circular annular �ns; analytical solutions for several
types of �ns; see Table 3.5 for e�ciencies of common �n shapes.
Applications of �n solutions:

� example 1 is a circular rod of length 2L which connects two walls at temper-
atures T1 and T2 which are greater than air temperature Tf ; there is convective
cooling from the sides of the rod into the air. Assume perfect contact at the
interfaces between the rod and the two walls.
special cases:
(i) when T1 = T2, the plane of symmetry (adiabatic plane) occurs at mid-point
(ii) when T1 > T2, the plane of symmetry moves to the right of the mid-point
(iii) when T1 < T2, the plane of symmetry moves to the left of the mid-point

� example 2 is a system which consists of two �nite length �ns L1; L2 with adi-
abatic ends connected to a rod of length L3 with adiabatic lateral boundaries.
Check Biot numbers: is Bi1 = h1te=k < 0:2 and is Bi2 = h2te=k < 0:2? Yes.
� system heat transfer rate: Qsys = (Tf1 � Tf2)=Rsys

� system resistance: Rsys = Rfin1 +Rrod +Rfin2

� component resistances:

Rfin1 = 1=
p
h1PkA tanh(m1L1) and m1 =

q
h1P=(kA)

Rfin2 = 1=
p
h2PkA tanh(m2L2) and m2 =

q
h2P=(kA)

Rrod = L3=(kA)
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