Week 4

Lecture 1

Hand out Project 1. Due Friday, October 16, 12 Noon.

• Extended surfaces or fins; temperature is one-dimensional T(x) when Bi = $ht_e/k < 0.2$ where the effective fin thickness is defined as $t_e = A/P$; where P is the constant fin perimeter and A is the constant fin conduction area.

See Web Site for derivation of general fin equation and general solution for fins with contact conductance, h_c , and end cooling, h_e ;

solution $\theta(x) = T(x) - T_f$, called the temperature excess, is a function of dimensionless parameters: $Bi_c = h_c L/k$, $Bi_e = h_e L/k$, mL with fin parameter: $m = \sqrt{hP/(kA)}$ P is the constant fin perimeter and A is the constant fin conduction area.

- Fin resistance: $R_{\text{fin}} = \theta_b/Q$; $\theta_b = T_b T_f$.
- Special cases of the general solution:
- (a) perfect contact at fin base: $Bi_c = \infty$ and end cooling: $Bi_e > 0$
- (b) perfect contact at fin base: $Bi_c = \infty$ and adiabatic end: $Bi_e = 0$;
- (c) perfect contact and *infinitely long* fin.
- Criterion for infinitely long fin: $L_{crit} = 2.65/\sqrt{(hP/kA)}$

When $L > L_{crit}$, model fin as infinitely long, and when $L < L_{crit}$, model fin as finite length with end cooling

Lecture 2

• Show examples of pin fins, straight fins and circular annular fins from telecommunication and microelectronics industries, and automotive industries.

• Sketch the typical straight fin (straight or pin) of length, L, conduction area, A, and perimeter, P.

• End conditions: (i) contact conductance, h_c at the base, x = 0, and (ii) convective cooling at the end, x = L.

- When $Bi = ht_e/k < 0.2$, then $T(x, y) \rightarrow T(x)$.
- Derivation of ODE:
- * heat balance on differential control volume (CV) dV = Adx:
- \star conduction into CV at x is $dQ_x = -kAdT/dx$,

- * conduction rate out of CV at x + dx is $Q_x + (dQ_x/dx) dx$,
- * convection loss is $dQ_{\text{conv}} = hPdx(T(x) T_f);$
- \star no sources, steady-state;

* derive governing second-order ordinary differential equation.

see section 3.6.2 for derivation of ODE and boundary conditions at x = 0 (perfect contact) and x = L (convection cooling).

- See Table 3.4 for summary of solutions.
- See Table 3.5 for summary of fin efficiencies: η_f for various fin types.

Lecture 3

Review of material on Web site for derivation of general fin equation valid for variable conduction area, A(x), and variable perimeter, P(x); introduce temperature excess: $\theta(x) = T(x) - T_f$; note that $d\theta/dx = dT/dx$ because T_f is constant; consider special case: A and P are constants;

fin equation becomes $d^2\theta/dx^2 - m^2\theta = 0$ in 0 < x < L with fin parameter:

 $\boxed{m = \sqrt{hP/kA}}$ units of m are 1/m; at the base, x = 0, there is contact conductance, h_c , and at the fin end, x = L, there is convective cooling, h_e ;

boundary conditions of the third kind (Robin) are applied at the fin base and fin end:

$$d\theta(0)/dx = -(h_c/k) \left[\theta_b - \theta(0)\right]$$
 and $d\theta(L)/dx = -(h_e/k)\theta(L)$; $\theta_b = T_b - T_f$;
solution is $\theta = C_1 \cosh mx + C_2 \sinh mx$;
introduce dimensionless fin parameters: $Bi_c = h_c L/k$, $Bi_e = h_e L/k$,

 $mL = \sqrt{(hP/kA)} L$

solve for the constants of integration which are:

$$C_1 = rac{ heta_b}{1+rac{mL\phi}{Bi_c}} \quad ext{and} \quad C_2 = -rac{ heta_b\,\phi}{1+rac{mL\phi}{Bi_c}}$$

where

$$\phi = rac{mL anh mL + Bi_e}{mL + Bi_e anh mL}$$

obtain fin heat flow rate: $Q_{\text{fin}} = -kA_b d\theta(0)/dx$; A_b is the base conduction area. fin resistance: $R_{\text{fin}} = \theta_b/Q_{\text{fin}}$; see Web Site for development of solution and use the Javascript Calculator;

perfect contact at base and end cooling:

$$\begin{split} R_{fin} &= 1/\sqrt{hPkA} \tanh mL \\ \text{perfect contact at fin base and infinitely long fin:} \\ R_{fin} &= 1/\sqrt{hPkA} \\ \text{fin efficiency: } \boxed{\eta_f = Q_{\text{fin}}/Q_{\text{ideal}}}; \\ Q_{\text{ideal}} \text{ corresponds to an ideal fin whose thermal conductivity is infinitely large} \\ Q_{\text{ideal}} &= \int_0^L hP\theta_b \, dx + h_e A\theta_b = (hPL + h_e A)\theta_b \\ \text{special cases of general solution with perfect contact at fin base:} \\ h_c &= \infty \text{ or } Bi_c = \infty; \\ \text{three options at the fin end:} \\ (i) \text{ end cooling } h_e > 0 \text{ or } Bi_e > 0; \\ (ii) \text{ adiabatic end: } h_e = 0 \text{ or } Bi_e = 0; \\ (iii) \text{ infinitely long fin, i.e. } L > L_{crit} = 2.65/\sqrt{hP/kA}; \\ \text{see Web Site for several special cases.} \\ \text{Longitudinal fins; pin fins; circular annular fins; analytical solutions for several} \end{split}$$

types of fins; see Table 3.5 for efficiencies of common fin shapes.

Applications of fin solutions:

• example 1 is a circular rod of length 2L which connects two walls at temperatures T_1 and T_2 which are greater than air temperature T_f ; there is convective cooling from the sides of the rod into the air. Assume perfect contact at the interfaces between the rod and the two walls.

special cases:

(i) when $T_1 = T_2$, the plane of symmetry (adiabatic plane) occurs at mid-point (ii) when $T_1 > T_2$, the plane of symmetry moves to the right of the mid-point (iii) when $T_1 < T_2$, the plane of symmetry moves to the left of the mid-point

• example 2 is a system which consists of two finite length fins L_1, L_2 with adiabatic ends connected to a rod of length L_3 with adiabatic lateral boundaries. Check Biot numbers: is $Bi_1 = h_1 t_e/k < 0.2$ and is $Bi_2 = h_2 t_e/k < 0.2$? Yes.

• system heat transfer rate: $Q_{sys} = (T_{f1} - T_{f2})/R_{sys}$

• system resistance: $R_{sys} = R_{fin1} + R_{rod} + R_{fin2}$

• component resistances:

 $R_{fin1} = 1/\sqrt{h_1 P k A} \tanh(m_1 L_1) \text{ and } m_1 = \sqrt{h_1 P/(k A)}$ $R_{fin2} = 1/\sqrt{h_2 P k A} \tanh(m_2 L_2) \text{ and } m_2 = \sqrt{h_2 P/(k A)}$ $R_{rod} = L_3/(k A)$