Week 5

Lecture 1

Monday, October 12 lecture cancelled for Thanksgiving Day.

Lecture 2

Resistance of truncated cone of length L, and radii a, b where b > a with restriction: $(b - a)/L \ll 1$. Thermal conductivity depends on temperature such that $k(T) = k_0(1 + \beta T)$

Lateral boundaries are adiabatic and the ends are isothermal at temperatures: T_1 at x = 0 and $T_2 < T_1$ at x = L. Assume that T = T(x).

Fourier's Law of Conduction at arbitrary plane x is

$$Q = -k_0(1+eta T)A(x)rac{d\,T}{dx}$$

Separate variables: T, x and integrate to get:

$$\int_{0}^{L} rac{Q}{A(x)} dx = \int_{T_{1}}^{T_{2}} -k_{0}(1+eta\,T)\,dT$$

RHS gives:

$$k_0 \left[1 + \beta \frac{(T_1 + T_2)}{2} \right] (T_1 - T_2) = k_m (T_1 - T_2)$$

where k_m is the value of the thermal conductivity at the arithmetic mean temperature $(T_1 + T_2)/2$. To integrate LHS we require the local conduction area:

$$A(x) = \pi r^2 = \pi \left[a + (b-a)\frac{x}{L}\right]^2$$

Substitute into LHS and integrate. The substitution u = a + (b - a)x/L can be used to simplify the integration. Finally, we find LHS is

$$\int_0^L \frac{Q}{A(x)} dx = \frac{QL}{\pi ab}$$

Interpretation of denominator: πab which is equal to $\sqrt{\pi a^2 \pi b^2}$ which can be expressed as the geometric mean conduction area: $\sqrt{A_i A_o}$ where A_i and A_o are the conduction areas at inlet and outlet of truncated cone.

 $\operatorname{Resistance}$ is

$$R = \frac{(T_1 - T_2)}{Q} = \frac{L}{k_m \sqrt{A_i A_o}}$$

Discuss Project 1: Problem 3.131 of text. Recommend analysis based on a fin and associated gap. Circular annular fin: see section 3.6.4 of text for equation, solution, heat flow rate, fin efficiency and fin resistance; application to heat sink. See Table 3.5 for expressions for efficiency of several straight fins and pin fins having different cross-sections. See Examples 3.9 and 3.10. See Web Site for Maple solutions for Examples 3.9 and 3.10.

Lecture 3

Project 1 is due Friday, October 16 at noon to Rebecca.

Bounds on resistance of a composite wall. Upper bound is based on parallel adiabats and lower bound is based on parallel isotherms. Actual resistance lies between the upper and lower bound values:

$$R_{LB} \leq R_{\mathrm{actual}} \leq R_{UB}$$

Actual resistance can be estimated by some average value of the upper and lower bounds such as

$$R_{\text{approx}} = \frac{1}{2} (R_{LB} + R_{UB}) \quad \text{Arithmetic Mean}$$
$$R_{\text{approx}} = \sqrt{R_{LB}R_{UB}} \quad \text{Geometric Mean}$$
$$\frac{1}{R_{\text{approx}}} = \frac{1}{2} \left[\frac{1}{R_{LB}} + \frac{1}{R_{UB}} \right] \quad \text{Harmonic Mean}$$

When the bounds have relatively close values, the three approximations give close values.

Example: When $R_{LB} = 1$ and $R_{UB} = 2$, then $R_{AM} = 1.5$, $R_{GM} = \sqrt{2} = 1.414$, $R_{HM} = 4/3 = 1.333$. Observe that the R_{GM} value is close to the geometric mean of the R_{AM} and R_{HM} values.

The Geometric Mean value is therefore recommended.

Chapter 4:

• Steady-state, source free, two- and three-dimensional conduction problems.

• Solution methods: (A) analytical; (B) numerical; (C) analog; (D) approximate methods.

analytical: (i) separation of variables; (ii) conformal mapping method; (iii) transform methods such as Fourier sine or cosine, and other transform methods; limited by the geometry and the boundary conditions.

numerical: (i) finite difference method; (ii) finite volume method, (iii) finite element method; (iv) boundary integral equations method; (v) surface element method; (vi) other numerical methods based on some analytical method; analog: electrical; mass transfer; hydrodynamic;

approximate: upper bound (parallel adiabats) and lower bound (parallel isotherms) on system resistance; flux plotting (based on sketching isotherms and adiabats); approximate methods are cost effective.

- Shape factor S [m]. Definitions: $Q = kS(T_1 T_2) = (T_1 T_2)/R$
- Relationship between S and R is S = 1/(kR) or R = 1/(kS).
- See Table 4.1 for a short list of some useful shape factors.
- See Maple worksheets on shape factors on ME 353 Website.

Lecture 4

Makeup lecture 2.

Discussion on shape factors given in Table 4.1.

- Sphere buried in semiinfinite region
- Long circular cylinder buried in semiinfinite region
- Long circular cylinder in a square cylinder.

• How to find approximate expression for square cylinder inside a square cylinder using the exact solution for the circle inside a circle; two rule method: (a) set the inner areas equal; (b) set the volumes equal; discuss other rules that may be used to find the outer radius; it was suggested that (i) the outer areas can be set equal; (ii) the minimum spacing can be set equal; two approximations based on analog methods were presented: $S/L = 2\pi/(0.93\ln(\beta/\alpha) - 0.0502)$ for $\beta/\alpha > 1.4$ and $S/L = 2\pi/(0.785\ln(\beta/\alpha))$ for $\beta/\alpha < 1.4$.