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ME 353 M.M. Yovanovich

Week 8

Lecture 1

Provide midterm results. Problem 3 of midterm will be re-submitted at start
of next lecture.
Outline of the solution procedure to be followed.

Lecture 2

Hand in Problem 3.
Half-space solutions.
Neumann Solution:

T (x; t) = Ti +
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Instantaneous surface temperature rise: T (0; t) = Ts.

Ts = Ti +
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Robin Solution:

T (x; t)� Ti
Tf � Ti

= erfc
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Instantaneous surface temperature rise: T (0; t) = Ts.

Ts � Ti
Tf � Ti

= 1� exp
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Instantaneous surface heat ux: qs

qs = �k
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Approximations of error and complementary error functions from P. R. Greene,
J. Fluids Engineering, Vol. 111, pp. 224-226.

erf(x) = 1�A exp
h
�B (x+ C)2

i
and

erfc(x) = 1� erf(x) = A exp
h
�B (x+ C)2

i
with coe�cients:

A = 1:5577; B = 0:7182; C = 0:7856

Greene claims the approximations are accurate to 0:42%. This is acceptable
accuracy for many engineering calculations.

Inverse of Complementary Error Function

Inverse of y = erfc(x) is x = erfc�1(y) where 0 � y < 1 and x � 0.

x = �C +

s
� 1

B
ln
�
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Accuracy of inverse is unknown.

Commence overview of 1D transient solutions in plane wall, long circular cylin-
der, and solid sphere. See sections 5.4 through 5.6. Discuss temperature varia-
tion in plane wall during cooling.

Lecture 3

Return Midterm Exam at end of lecture. Provide new statistics.

Internal transient conduction: plane wall T (x; t), long solid circular cylinder
T (r; t) and solid sphere T (r; t); See text and Web site for Maple worksheets for
Heisler cooling charts for one-dimensional conduction.
Dimensionless temperature: �(�; Fo) depends on dimensionless position: � =
x=L for wall of thickness: 2L; � = r=a for cylinder and sphere of radius a; and
dimensionless time: Fo = �t=L2 where L = L or a.
Dimensionless temperature is de�ned as:

�h =
Tf � T (�; Fo)

Tf � Ti
; for heating

and

�c =
T (�; Fo)� Tf

Ti � Tf
; for cooling
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General Form of Temperature Solutions

�(�; Fo) =
1X
n=1

An exp
�
��2nFo

�
S(�n�) Fo > 0

whereAn are the temperature Fourier coe�cients; S(�n�) is the space-dependent
function, and exp(��2nFo) is the time-dependent function.
The eigenvalues: �n are the positive, real roots of the characteristic equations:

�n sin �n = Bi cos �n; plane wall

and
�nJ1(�n) = BiJ0(�n); long cylinder

where J0(x) and J1(x) are Bessel functions of the �rst kind of order 0 and 1,
respectively; and

�n cos �n = (1�Bi) sin �n; sphere

where the Biot number: Bi = hL=k lies in the range 0 < Bi <1.
Space-dependent Functions

S(�n�) = cos(�n�); plane wall

and
S(�n�) = J0(�n�); long cylinder

and

S(�n�) =
sin(�n�)

(�n�)
; sphere

Fourier Temperature Coe�cients An are obtained from:

An =
2 sin �n

�n + sin �n cos �n
; plane wall

and

An =
2J1(�n)

�n [J2

0
(�n) + J2

1
(�n)]

; long cylinder

and

An =
2(sin �n � �n cos �n)

�n � sin �n cos �n
; sphere

Heat Loss

The heat loss is de�ned as

Qloss = Ei � E(t) = �cP �iV � �cP ��V = �cpV
�
�i � ��

�
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where Ei and E(t) represent the internal energy within the body initially and at
arbitrary time t > 0, and V is the total volume of the body. The thermophysical
properties are assumed to be constant during the cooling process. The volume
average body temperature excess is de�ned as

�� =
1

V

Z Z Z
V
� dV

Heat Loss Fraction

The heat loss fraction is de�ned as

Ei �E(t)

Ei
; t > 0

which gives

Q

Qi
= 1�

��

�i
= 1�

1X
n=1

Bn exp
�
��2nFo

�
; F o > 0

where Qi = Ei for convenience. The heat loss fraction Fourier coe�cients Bn

are obtained from:

Bn = An
sin �n
�n

; plane wall

and

Bn = 2An
J1(�n)

�n
=

4Bi2

�2n(�
2

n +Bi2)
; long cylinder

and

Bn =
6Bi2

�2n(�
2

n +Bi2 �Bi)
; sphere

Long Time Solutions

For Fo > Foc where Foc = 0:24; 0:21; 0:18 for plane wall, long cylinder and
solid sphere, respectively, the general solution converges to the �rst term of the
summation, i.e.,

�(�; Fo) = A1 exp(��21Fo)S(�1�)
and the �rst eigenvalue can be approximated by the correlation equation:

�1 = �1;1

"
1 +

 
�1;1
�1;0

!n#�1=n

where �1;0 is the asymptotic value as Bi! 0 and �1;1 is the asymptotic value
as Bi!1. The correlation coe�cients are given in the following table:
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Geometry Wall Cylinder Sphere

�1;0
p
Bi

p
2Bi

p
3Bi

�1;1 �=2 2:4048255 �

n 2:139 2:238 2:314

Heat Loss Fraction for Long Time

The series solution converges to the �rst term of the summation, and

Q(Fo)

Qi
= 1 �B1 exp(��1Fo)

See ME 353 Web site for Maple worksheets for plane wall, long cylinder, and
sphere. The worksheets show the full solutions and the �rst term approxima-
tions.

Lumped Capacitance Model

For all time Fo > 0 and su�ciently small Biot numbers, Bi = hL=k < 0:2,
where L = L; a for the plane wall, and cylinder and sphere,

�(Fo)

�i
= e�BiFo; plane wall

and
�(Fo)

�i
= e�2BiFo; long cylinder

and
�(Fo)

�i
= e�3BiFo; sphere

or, in general, for all systems:

�(t)

�i
= exp

 
� hS

�cPV
t

!
; t > 0

and
Q(t)

Qi
= 1 � exp

 
� hS

�cPV
t

!
; t > 0
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