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Abstract

Simple single term approximations for the Heisler cooling charts and the Grober fractional energy

loss are presented for the plate, in�nite circular cylinder and sphere. These solutions are accurate

to within 1% of the series solutions provided the dimensionless time Fo is greater than some critical

value Foc which lies in the range: 0:18�0:24. Simple explicit expressions are provided for the accurate

calculation of the �rst eigenvalue for all values of the Biot number. Polynomial expressions are pre-

sented for the accurate calculation of the roots of the Bessel functions of the �rst kind of orders zero

and one. Expressions are developed for the accurate computation of the Bessel functions of the �rst

kind of orders zero and one. Simple accurate solutions are proposed for calculating the dimensionless

temperature and the heat loss fraction for �nite circular cylinders, rectangular parallelopipeds and

in�nite rectangular bars. Maple V R3 worksheets are given for the accurate calculation of the dimen-

sionless temperature and dimensionless heat loss for the in�nite plate, in�nite circular cylinder and

the sphere.

Nomenclature

An = Fourier coe�cients for
dimensionless temperature

Bn = Fourier coe�cients for heat loss
fraction

Bi = Biot number; Bi = hL=k
C1; C2 = correlation coe�cients
cp = speci�c heat at constant pressure;

J=kg�K
D = diameter of cylinder or sphere; m
Fo = Fourier number; Fo = �t=L2
h = heat transfer coe�cient; W=m2�K
J0 (�) ; J1 (�) = Bessel functions, �rst kind orders

0 and 1
L = some characteristic body

dimension
N = number of panels in

trapezoidal approximation
n = constant power
Q = energy loss; J
Qi = initial internal energy, �cpV �i; J
R = radius of circular cylinder
S = total active surface area; m2

Sc; Sp; Ss = spatial functions for cylinder,
plate and sphere

T (�; Fo) = temperature of body; K
Tf = 
uid temperature; K
t = time; s
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V = total volume; m3

X;Y; Z = half-dimensions of cuboid
and rectangular bar; m

x; y; z = Cartesian coordinates

Greek Symbols

� = thermal di�usivity;
k=�cp; m2=s

�0; �1 = parameters in modi�ed
Stokes approximation

�n = nth root of characteristic
equations

�n;c = nth root for in�nite cylinder
�n;p = nth root for in�nite plate
�n;s = nth root for sphere
�1 = 1st root for 0 < Bi <1
�1;0 = 1st root for Bi ! 0
�1;1 = 1st root for Bi !1
� = dimensionless temperature;

�=�i
� = temperature excess;

� = T (�; Fo)� Tf ; K
�i = initial temperature excess,

�i = T (�; 0)� Tf ; K
� = mass density; kg=m3

� = dimensionless position within
any body

Subscripts

c = in�nite cylinder
cp = �nite cylinder
i = initial value
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p = in�nite plate
x; y; z = in�nite plates along

x�; y�; z�coordinates
xy = in�nite rectangular bar
xyz = cuboid
0 = at very small time
1 = the �rst root or �rst

eigenvalue
1 = at very large time

Introduction

One-dimensional transient conduction solutions inside
plates, in�nite circular cylinders and spheres are presented
in all heat transfer texts. The governing equations for
the three classical geometries are given in Cartesian, cir-
cular cylinder and spherical coordinates. The initial and
boundary conditions are speci�ed. The dimensionless tem-
perature history (�) which is a function of three dimen-
sionless parameters: position (�), time (Fo) and bound-
ary condition (Bi) is presented in symbolic form for the
three geometries. All texts present the respective solutions
in graphical form, frequently called the Heisler1 cooling
charts (for the temperature at the centerline (plate) or
the origin (cylinder, sphere) as a function of Fo and Bi.
Auxiliary charts are available for all o�-center or o�-origin
points 0 � � < 1. In addition Heisler charts are presented
for small time Fo < 0:2.

Grober et al.2 introduced the charts for the total
heat loss fraction Q=Qi for the three geometries. These
charts are presented in great detail in Liukov3, Grigull
and Sandner4, and all heat transfer texts.

Heisler1, Liukov3 and Grigull and Sandner4 discuss
the fact that the temperature and heat loss fraction charts
can be computed with acceptable accuracy using the lead-
ing term in the respective series solutions. The leading
term can be used for all values of Bi provided Fo � Foc
where according to Heisler1, the critical Fourier number
is approximately equal to Foc = 0:24; 0:21; 0:18 for the
in�nite plate, in�nite circular cylinder and sphere respec-
tively. For Fo < Foc more terms in the series solutions are
required to give acceptable accuracy. Heisler1 also noted
that more than 80% of the total cooling time is accounted
for with the single term solution.

Liukov3 reports an early attempt to provide approxi-
mations for the calculation of the �rst roots (eigenvalues)
of the characteristic equations for the three geometries. He
showed graphically that when ln (�1;1=�1 � 1) is plotted
against ln (Bi), over the range: �3 � ln (Bi) � 3, that
the points were close to a straight line. A log-linear �t
of the data for the three geometries leads to the following
correlation equation:

�1
�1;1

=
1q

1 +C1=BiC2

(1)

where �1;1 is the value of �1 at Bi = 1. The val-
ues of �1;1 are: �=2; 2:4048255::; � for the in�nite plate,
the in�nite circular cylinder and the sphere respectively.
Liukov3 reports the correlation coe�cients for the plate:
C1 = 2:24; C2 = 1:02, the cylinder: C1 = 2:45; C2 = 1:04,
and the sphere: C1 = 2:70; C2 = 1:07. This correlation
equation for the �rst eigenvalues gives acceptable values
for Bi � 100; otherwise the errors are much greater than
1%. The largest errors occur when Bi � 0:1. It is un-
known what errors are introduced into the computation
of the Fourier coe�cients A1 and B1 by the use of this
correlation equation.

Chen and Kuo5 applied the heat balance integral
method to obtain approximate solutions for the in�nite
plate and the in�nite circular cylinder. These equations
which are reported in Chapman6 can be evaluated by
means of programmable calculators, and they are said to
be accurate provided Fo > Foc. Since these equations are
lengthy and involved, they will not be presented here.

Some of the recently published heat transfer texts:
Chapman6 , Bejan7 , Holman8 , Incropera and DeWitt9

, Mills10 and White11 recognize that the series solutions
converge to the leading term for long times, i.e. Fo > 0:2
with errors of about 1 %. They present tables for the roots
(eigenvalues) of the corresponding characteristic equations
and the Fourier coe�cients: A1 and B1 that appear in
the dimensionless temperature and heat loss fraction ex-
pressions. For values of Bi not given in the tables, it is
necessary to employ interpolation methods to use the tab-
ulated values. Once the eigenvalues are known, the evalu-
ation of the Bessel functions J0(�) and J1(�) that appear in
the characteristic equation for the circular cylinder, and
the Fourier-Bessel coe�cients that appear in the tempera-
ture and heat loss expressions must be considered. These
calculations are tedious and prone to errors, and unnec-
essary with the availability of programmable calculators
and computers.

There is, therefore, a need to develop simple, accurate
equations for the computation of the �rst root of the char-
acteristic equations for the three geometries. Secondly,
there is a need to develop simple relationships for the ac-
curate calculation of the Bessel functions that appear in
the solutions for the in�nite circular cylinder. These re-
lationships will then be used to develop simple accurate
relationships for the accurate calculation of the dimension-
less temperature and the heat loss fraction for the three
geometries for Fo � Foc. Finally, by means of super-
position, expressions will be developed for calculating the
dimensionless temperature within composite bodies such
as cuboids (Fig. 1), in�nite rectangular bars (Fig. 2), and
�nite circular cylinders (Fig. 3). Also, by means of the
Langston12 relationships for the determination of the heat
loss fraction for composite bodies, a method will be pro-
posed for the simple, but accurate, calculation of the heat
loss fraction from: cuboids, in�nite rectangular bars, in�-
nite plates, �nite and in�nitely long circular cylinders.
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Fig. 1 The cuboid
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Fig. 2 The in�nite rectangular bar
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Fig. 3 The �nite circular cylinder

Heisler Dimensionless
Temperature Charts

The Heisler1 dimensionless temperature charts that
appear in all heat transfer texts were developed for the
classic geometries: plate, in�nite circular cylinder and
sphere. Since the dimensionless temperature � depends
on three dimensionless parameters: Bi; Fo; � where Bi is
the Biot number, Fo is the Fourier number, and � is the
dimensionless position, it is not possible to show the tem-
perature at any point within the solid at any arbitrary
time.

The dimensionless temperature charts are based on
the general solution:

� =
1X
n=1

An exp
���2nFo�S (�n�) (2)

where An are the temperature Fourier coe�cients that are
functions of the boundary condition through Bi and the
initial condition, �n are the eigenvalues which are the pos-
itive roots of the characteristic equation, and S (�n�) is
the position function. For the three geometries the posi-
tion function has the forms:

Plate

Sp = cos (�n�) (3)

Circular Cylinder

Sc = J0 (�n�) (4)

Sphere

Ss =
sin (�n�)

(�n�)
(5)

Fourier Coe�cients for Temperature

The Fourier coe�cients for temperature for the three ge-
ometries have the following forms:

Plate

An;p =
2 sin �n

�n + sin �n cos �n
(6)

or

An;p = (�1)n+1 2Bi
�
Bi2 + �2n

�1=2
�n
�
Bi2 + Bi + �2n

� (7)

Circular Cylinder

An;c =
2J1 (�n)

�n
�
J20 (�n) + J21 (�n)

� (8)

or

An;c =
2Bi

J0 (�n)
�
�2n +Bi2

� = 2

�n [1 + �2n=Bi
2]J1 (�n)

(9)
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Sphere

An;s =
2 (sin �n � �n cos �n)

�n � sin �n cos �n
(10)

An;s = (�1)n+1
2Bi

h
�2n + (Bi � 1)2

i1=2
�
�2n + Bi2 � Bi

� (11)

The eigenvalues that appear in the above relationships are
the positive roots of the characteristic equations which
have the following forms for the three geometries:

Plate

x sinx = Bi cos x (12)

Circular Cylinder

xJ1(x) = BiJ0(x) (13)

Sphere

(1� Bi) sin x = x cosx (14)

Analysis of the Solutions

Bi! 0

For these three geometries for all dimensionlesss time
Fo > 0, as Bi ! 0, the �rst Fourier coe�cient A1 ! 1
and all other Fourier coe�cients An ! 0 for n � 2. The
�rst root of the three characteristic equations approaches
zero in the following manner:

Plate

�1;p !
p
Bi (15)

Circular Cylinder

�1;c !
p
2Bi (16)

Sphere

�1;s !
p
3Bi (17)

and the respective dimensionless temperature solutions be-
come:

Plate

�p = e�BiFo (18)

Circular Cylinder

�c = e�2BiFo (19)

Sphere

�s = e�3BiFo (20)

which are seen to be particular cases of the general lumped
parameter solution:

� = e
�

hS
�cpV

t
(21)

where S is the total active heat transfer surface of the
geometry and V is its volume.

Bi! 0 Limit

At this limit the eigenvalues for the three geometries go
to the following relationships:

Plate

�n;p = (n� 1)
�

2
; n � 2 (22)

Circular Cylinder

�n;c =
�1
4

�
1� 6

�21
� 6

3�41
� 2358

5�61

�
; n = 1; 2; 3:::

(23)
with �1 = � (4n+ 1). The above relationship is a mod-
i�cation of the Stokes approximation (Abramowitz and
Stegun13). It gives acceptable values of the roots of
J1 (�) = 0 for all values n � 1. The largest error is ap-
proximately 0:0015% when n = 1 and the error is much
smaller for all n � 2.

Sphere

There is no simple relationship for the eigenvalues �n;p for
n � 2. The eigenvalues are the roots of

x cos (x)� sin (x) = 0 (24)

Numerical methods are required to �nd the roots which
lie in the interval: (n � 1)�; (2n � 1)�=2. The �rst nine
roots are approximately:

x1 = 0
x2 = 4:493409
x3 = 7:725252
x4 = 10:904122
x5 = 14:066194
x6 = 17:220755
x7 = 20:371303
x8 = 23:519453
x9 = 26:666054

For very large values of n the roots approach the value
xn ! (2n� 1)�=2.

Bi!1 Limit

At this limit, the roots (eigenvalues) of the charac-
teristic equations are given by the following relationships:

Plate

�n = (2n� 1)
�

2
n = 1; 2; 3::: (25)

Circular Cylinder

�n =
�0
4

�
1 +

2

�20
� 62

3�40
+

7558

15�60

�
; n = 1; 2; 3::: (26)

with �0 = � (4n� 1). The above relationship is a mod-
i�cation of the Stokes approximation (Abramowitz and
Stegun13). It gives acceptable values of the roots of
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J0 (�) = 0 for all values n � 1. The largest error is ap-
proximately �0:0024% when n = 1, and the error is much
smaller for all n � 2.
Sphere

�n = n� n = 1; 2; 3; ::: (27)

The Fourier coe�cients for temperature are deter-
mined by means of the following expressions:

Plate

An = (�1)n+1 4

(2n� 1)�
n = 1; 2; 3::: (28)

Circular Cylinder

An =
2

�nJ1 (�n)
n = 1; 2; 3::: (29)

Sphere

An = 2 (�1)n+1 n = 1; 2; 3::: (30)

Heat Loss Fraction Charts

The heat loss fraction Q=Qi where Qi = �cpV �i is
the initial total internal energy depends on the boundary
condition parameter Bi and the dimensionless time Fo in
the following way:

Q

Qi
= 1�

1X
n=1

Bn exp
���2nFo� (31)

The Fourier coe�cients Bn are given by the following re-
lationships for the three geometries:

Plate

Bn;p = An;p
sin �n
�n

=
2Bi2

�2n
�
Bi2 + Bi + �2n

� (32)

Circular Cylinder

Bn;c = 2An;c
J1 (�n)

�n
=

4Bi2

�2n
�
�2n +Bi2

� (33)

Sphere

Bn;s =
6Bi2

�2n
�
�2n +Bi2 � Bi

� (34)

Analysis of the Heat Loss Coe�cients

The heat loss coe�cients Bn have particular values in
the two limits: Bi! 0 and Bi !1. In the �rst limit, all
Fourier coe�cients for heat loss fraction are equal to zero
for n � 2.

In the second limit they are given by:

Plate

Bn;p =
8

�2 (2n� 1)
2

n = 1; 2; 3::: (35)

Circular Cylinder

Bn;c =
4

�2n
n = 1; 2; 3::: (36)

where �n are the roots of J0 (�n) = 0 which are given
above.

Sphere

Bn;s =
6

(n�)
2

n = 1; 2; 3::: (37)

Clearly the heat loss coe�cients are easily computed as

Bi!1 and therefore the heat loss fraction can be deter-
mined without di�culty.

Numerical Solutions

Accurate numerical results for the three geometries can
be obtained easily by means of a Computer Algebra
System such as Maple14, MathCAD15, Mathematica16 or
MATLAB17. The proposed solutions and procedure can
also be implemented in spreadsheets.

Maple14 V R3 worksheets for the plate, in�nite circu-
lar cylinder and the sphere are presented in the Appendix.
For each geometry the input parameters are: Bi; Fo; �;N
where N is the number of terms in the partial sum. It is
recommended that N = 5 although it can be set to any
integer value N > 1. In each worksheet, the �rst �ve in-
puts are: i) the de�nition of the characteristic equation,
ii) de�nition of the Fourier coe�cient for temperature, iii)
de�nition of the Fourier coe�cient for heat loss fraction,
iv) de�nition of the dimensionless temperature, and v) def-
inition of the heat loss fraction. The next �ve inputs create
lists for the N : i) eigenvalues, ii) coe�cients An, iii) coe�-
cients Bn, iv) dimensionless temperature terms �n, and v)
heat loss fraction terms Q=Qi;n. The last two inputs give
the dimensionless temperature and the heat loss fraction
for the given values of Bi; Fo and �.

Approximations of Bessel Functions

There several methods that can be used to compute
the Bessel functions: J0 (x) and J1 (x). There are polyno-
mial approximations (Abramowitz and Stegun13) available
for all positive values of x for both Bessel functions. These
polynomial approximations are based on many terms that
require space, and they are somewhat di�cult to imple-
ment in spreadsheets or in a programmable calculator.
The following expression which is based on the applica-
tion of the trapezoidal rule to the integral form of J� (x)
for arbitrary order was developed by means of the Maple

function trapezoid which is found in the student package:

J� (x) =
1

2N
+
cos (��)

2N
+

1

N

N�1X
i=1

cos

�
x sin

�
i�

N

�
� �i�

N

�
(38)
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where N is the number of panels and � is the order of
the Bessel function. From this general expression one can
develop expressions for both J0 (x) and J1 (x) for di�er-
ent ranges of x and for di�erent accuracy. For the range:
0 � x � 2:4048 that is applicable for the �rst term and for
the entire range of Bi, one can use 6 panels in the above
expression to obtain the following expressions which pro-
vide accurate values of the two Bessel functions:

J0 (x) =
1

6

"
1 +

5X
i=1

cos

�
x sin

�
1

6
i�

��#
(39)

and

J1 (x) =
1

6

"
5X

i=1

cos

�
x sin

�
1

6
i�

�
� 1

6
i�

�#
(40)

Explicit Solutions of Characteristic
Equations

The observations regarding the relationship of the �rst
root �1 of the the three characteristic equations with re-
spect to Bi reported by Liukov3 and the results of the
analysis of the theoretical solutions presented above sug-
gests that it is possible to use the asymptotic values: �1;0
and �1;1 corresponding to Bi ! 0 and Bi ! 1 respec-
tively to develop interpolation functions for �1 which will
be accurate for all values of Bi. Plotting the ratio �1;1=�1
versus Bi gives a function that various smoothly between
the asymptote: �1;1=�1;0 for Bi! 0 and the other asymp-
tote is equal to 1 for Bi !1.

Based on the above observations the explicit solutions
(�rst eigenvalues) of the characteristic equations for the
three geometries can be written in the general form:

�1 =
�1;1�

1 +

�
�1;1
�1;0

�n�1=n (41)

The form is based on the method �rst proposed by
Churchill and Usagi14. The approximate explicit solution
always gives very accurate values for very small and very
large values of Bi independent of the value of the parame-
ter n. To obtain accurate values for intermediate values of
Bi: (0:5 � Bi � 5) it is necessary to �nd appropriate val-
ues of n. The values: (n = 2:139; n= 2:238; n = 2:314) for
the plate, cylinder and sphere respectively, provide values
of �1 which di�er by less than 0:4 % from the exact values
of �1. This accuracy is acceptable for most applications.
To develop more accurate solutions for the intermediate
range it may be necessary to �nd relationships between
the parameter n and Bi for each geometry.

Temperature and Heat Loss Fraction
for Composite Geometries

The basic solutions given above can be used to de-
velop solutions for composite geometries such as cuboids

and �nite circular cylinders with convection cooling at all
boundary surfaces. Since the cuboid solution is based on
the superposition of three plate solutions, it reduces to
the in�nite rectangular bar solution and the in�nite plate
solution.

The dimensionless temperature and heat loss fraction
solutions for the cuboid and the �nite circular cylinder will
be presented in the following sections.

For the general case of a cuboid (Fig 1): �X � x �
X;�Y � y � Y;�Z � z � Z that is cooled at its per-
pendicular faces: x = �X,y = �Y , z = �Z, through uni-
form heat transfer coe�cients: hx; hy; hz, there are three
Biot numbers to consider: Bix; Biy; Biz. The cooling of
a cuboid is also characterized by three Fourier numbers:
Fox; F oy; F oz.

Dimensionless Temperature for Cuboids

The dimensionless temperature at any point within
the cuboid for arbitrary time can be obtained by the means
of the product of the solutions for three in�nite plates:

�xyz (x; y; z; t) = �x;p�y;p�z;p (42)

where the basic in�nite plate solution given by Eq. (2) is
used three times:

�x;p = A1;x exp
���21;xFox� cos (�1;xx=X) (43)

�y;p = A1;y exp
���21;yFoy� cos (�1;yy=Y ) (44)

�z;p = A1;z exp
���21;zFoz� cos (�1;zz=Z) (45)

The corresponding eigenvalues: �1;x; �1;y; �1;z are de-
pendent on the respective Biot numbers: Bix; Biy ; Biz.

The Fourier coe�cients: A1;x; A1;y; A1;z are deter-
mined according to Eqs. (6) or (7). The eigenvalues:
�1;x; �1;y; �1;z are calculated by means of the general ex-
plicit relationship developed for �1.

Rectangular Plates

The dimensionless temperature and heat loss fraction
from rectangular plates or bars (Fig. 2): �X � x �
X;�Y � y � Y is a special case of the cuboid solution.
Here two Biot numbers: Bix; Biy and two Fourier num-
bers: Fox; F oy are required to characterize its cooling.

Dimensionless Temperature of

Rectangular Plates

The dimensionless temperature at any point within
in�nite rectangular plates for arbitrary time can be ob-
tained by the means of the product of the solutions for
two in�nite plates:

�xy (x; y; t) = �x;p�y;p (46)
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where the basic in�nite plate solution given by Eq. (2) is
used two times:

�x;p = A1;x exp
���21;xFox� cos (�1;xx=X) (47)

�y;p = A1;y exp
���21;yFoy� cos (�1;yy=Y ) (48)

Heat Loss Fraction for Cuboids

The heat loss fraction can be determined by means of
the relationship developed by Langston12:�

Q

Qi

�
xyz

=

�
Q

Qi

�
x

+

�
Q

Qi

�
y

�
1�

�
Q

Qi

�
x

�
+ (49)

�
Q

Qi

�
z

�
1�

�
Q

Qi

�
x

� "
1�

�
Q

Qi

�
y

#

where Qi = �cp8XY Z�i.

Heat Loss Fraction from Rectangular Plates

The heat loss fraction from a rectangular plate: �X �
x � X;�Y � y � Y is a special case of the cuboid
solution. Here two Biot numbers: Bix; Biy and two
Fourier numbers: Fox; F oy are required to characterize
its cooling. The heat loss fraction is obtained by following
relationship(Langston12):�

Q

Qi

�
xy

=

�
Q

Qi

�
x

+

�
Q

Qi

�
y

�
�
Q

Qi

�
x

�
Q

Qi

�
y

(50)

where Qi = �cp4XY �i.
In the above relationships the component heat loss

fractions are obtained by means of the following expres-
sions: �

Q

Qi

�
x

= 1�B1;x exp
���21;xFox� (51)

and �
Q

Qi

�
y

= 1�B1;y exp
���21;yFoy� (52)

and �
Q

Qi

�
z

= 1�B1;z exp
���21;zFoz� (53)

The corresponding eigenvalues: �1;x; �1;y; �1;z are depen-
dent on the respective Biot numbers: Bix; Biy; Biz.

Finite Circular Cylinders

The dimensionless temperature and the heat loss frac-
tion from a �nite circular cylinder (Fig. 3): 0 � r �
R;�X � x � X is based on the superposition of the
in�nite circular cylinder and in�nite plate solutions. Here
two Biot numbers: Bip = hxX=k;Bic = hrR=k and two

Fourier numbers: Fop = �t=X2; F oc = �t=R2 are re-
quired to characterize its cooling. The heat transfer co-
e�cients are identical over the two ends: x = �X, but
di�erent from the side heat transfer coe�cient hr.

Dimensionless Temperature for

Finite Circular Cylinders

The dimensionless temperature at any point within
the �nite circular cylinder for arbitrary time can be ob-
tained through the product of the solutions for the in�nite
circular cylinder and the in�nite plate:

�cp (r; z; t) = �c�p (54)

where

�c = A1;c exp
���21;cFoc� J0 (�1;cr=R) (55)

and
�p = A1;p exp

���21;pFop� cos (�1;px=X) (56)

Heat Loss Fraction for

Finite Circular Cylinders

The heat loss fraction is obtained by following rela-
tionship (Langston12):�

Q

Qi

�
cp

=

�
Q

Qi

�
c

+

�
Q

Qi

�
p

�
�
Q

Qi

�
c

�
Q

Qi

�
p

(57)

where Qi = �cp2�XR2�i.
In the above expressions the component heat loss frac-

tions are obtained by means of the following expressions:�
Q

Qi

�
c

= 1�B1;c exp
���21;cFoc� (58)

and �
Q

Qi

�
p

= 1�B1;p exp
���21;pFop� (59)

The corresponding eigenvalues: �1;c; �1;p are depen-
dent on the respective Biot numbers: Bic; Bip.

Summary

Simple, explicit and accurate expressions were devel-
oped for the calculation of the �rst roots of the charac-
teristic equations for in�nite plates, in�nite circular cylin-
ders and spheres for all values of the Biot number. Ac-
curate polynomial expressions which are modi�cations of
the Stokes approximations for the roots of the Bessel func-
tions: J0 (�) = 0 and J1 (�) = 0 are proposed. Simple
expressions based on the application of the trapezoidal
rule to the integral form of the Bessel function of the �rst
kind and arbitrary order � are presented. These expres-
sions are expanded in terms of the trigonometric func-
tions which are easily computed in spreadsheets and with
programmable calculators. Maple V R3 worksheets are
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presented in the appendix for accurate calculation of di-
mensionless temperature and dimensionless heat loss for
the plates, cylinders and spheres for all values of the Biot
number and any value of the Fourier number provided
Fo � 0:01. Simple single term expressions are given for
the accurate calculation of the dimensionless temperature
and the dimensionless heat loss fraction for in�nite plates,
in�nite cylinders and spheres. These single term expres-
sions are used to develop expressions, based on superposi-
tion and the method of Langston12, for the calculation of
dimensionless temperature and the dimensionless heat loss
fraction of bodies such �nite circular cylinders, cuboids
and in�nite rectangular bars. The proposed expressions
are simple and accurate provided Fo � Foc. They should
replace the tabular method currently presented in all heat
transfer texts. The tabular method e�ectively replaces the
Heisler1 and Grober2 charts.
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Appendix
Maple V R3 Worksheets

The Maple14 worksheets for the in�nite plates and cir-
cular cylinders, and the sphere are presented here. They
are valid for any value of � and for all values of Bi.
The worksheets can handle small dimensionless times:
Fo > 0:01 by increasing the number of terms in the sum-
mation. The input parameters for each worksheet are:
Bi; Fo; �;N where N is the number of terms in the sum-
mation. It is recommended that the number of terms
should be limited to N = 5 or less for most problems.

Maple Worksheet for Plates

restart:

case:= (Bi = 0.3, Fo = 1, zeta = 0, N = 5):

ce:= x*sin(x) - Bi*cos(x) = 0:

A:= 2*sin(x)/(x + sin(x)*cos(x)):

B:= A*sin(x)/x:

phi:= A*exp(- x^2*Fo)*cos(x*zeta):

Q_Qi:= B*exp(- x^2*Fo):

xvals:= [seq(fsolve(subs(case, ce),

x = j*Pi..(j + 1/2)*Pi, j = 0..rhs(case[4]))]:

As:= evalf([seq(subs(x = xvals[j], A),

j = 1..nops(xvals))]):

Bs:= evalf([seq(subs(x = xvals[j], B),

j = 1..nops(xvals))]):

phis:=
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[evalf(seq(subs(case, x = xvals[j], phi),

j = 1..nops(xvals)))]:

Q_Qis:=

[evalf(seq(subs(case, x = xvals[j], Q_Qi),

j = 1..nops(xvals)))]:

plate_temp:=

evalf(convert([seq(phis[j],

j = 1..nops(xvals))], `+`), 4);

plate_heat_loss:=

evalf(1 - convert([seq(Q_Qis[j],

j = 1..nops(xvals))], `+`), 4);

Maple Worksheet for Cylinders

restart:

case:= (Bi = 0.3, Fo = 1, zeta = 0, N = 5):

ce:= x*BesselJ(1, x) - Bi*BesselJ(0, x) = 0:

A:= 2*BesselJ(1, x)/(x*(BesselJ(0, x)^2 +

BesselJ(1, x)^2)):

B:= A*2*BesselJ(1, x)/x:

phi:= A*exp(- x^2*Fo)*BesselJ(0, x*zeta):

Q_Qi:= B*exp(- x^2*Fo):

xvals:= [seq(fsolve(subs(case, ce),

x = (j - 1)*Pi..j*Pi),

j = 0..rhs(case[4]))]:

As:= evalf([seq(subs(x = xvals[j], A),

j = 1..nops(xvals))]):

Bs:= evalf([seq(subs(x = xvals[j], B),

j = 1..nops(xvals))]):

phis:=

[evalf(seq(subs(case, x = xvals[j], phi),

j = 1..nops(xvals)))]:

Q_Qis:=

[evalf(seq(subs(case, x = xvals[j], Q_Qi),

j = 1..nops(xvals)))]:

cylinder_temp:=

evalf(convert([seq(phis[j],

j = 1..nops(xvals))], `+`), 4);

cylinder_heat_loss:=

evalf(1 - convert([seq(Q_Qis[j],

j = 1..nops(xvals))], `+`), 4);

Maple Worksheet for Spheres.

#Bi cannot be set to 1 and zeta cannot be set to 0.

#For Bi = 1, put Bi = 1.000001, and for zeta = 0,

#put zeta = 0.000001.

restart:

case:= (Bi = 0.3, Fo = 1, zeta = 0, N = 5):

ce:= x*cos(x) - (1 - Bi)*sin(x) = 0:

A:= 2*(sin(x) - x*cos(x))/(x - sin(x)*cos(x)):

B:= A*3*(sin(x) - x*cos(x))/x^3:

phi:= A*exp(- x^2*Fo)*sin(x*zeta)/(x*zeta):

Q_Qi:= B*exp(- x^2*Fo):

xvals:= [seq(fsolve(subs(case, ce),

x = (j - 1)*Pi..j*Pi),

j = 0..rhs(case[4]))]:

As:= evalf([seq(subs(x = xvals[j], A),

j = 1..nops(xvals))]):

Bs:= evalf([seq(subs(x = xvals[j], B),

j = 1..nops(xvals))]):

phis:= [evalf(seq(subs(case,

x = xvals[j], phi),

j = 1..nops(xvals)))]:

Q_Qis:=

[evalf(seq(subs(case, x = xvals[j], Q_Qi),

j = 1..nops(xvals)))]:

sphere_temp:=

evalf(convert([seq(phis[j],

j = 1..nops(xvals))], `+`), 4);

sphere_heat_loss:=

evalf(1 - convert([seq(Q_Qis[j],

j = 1..nops(xvals))], `+`), 4);
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