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ABSTRACT
An experimental test program is described for the measure-

ment of natural convection for an isothermal, heated sphere cen-
trally located in an isothermal, cooled spherical enclosure. A
transient test method is used in a reduced pressure environment
to provide data for a wide range of Rayleigh number, from the
limiting case of laminar boundary layer convection to the diffu-
sive limit. Tests are performed using a fixed outer diameter for
four different inner sphere diameters, resulting in diameter ra-
tios in the range 1�5 � do�di � 4�8. The data are in excellent
agreement with the exact solution for the conductive limit and
are shown to be bounded by a model for the isolated, isothermal
sphere.

NOMENCLATURE
A surface area; m2

a�b�c radiation correlation coefficients
C coefficient
cp specific heat capacity; J�kgK
d diameter; m
F�Pr� Prandtl number function
GL body gravity function
g gravitation acceleration; m�s2

h convective heat transfer coefficient; W�m2K
k thermal conductivity;W�mK
Kn Knudsen number, � λ�L

I heater current; A
Le effective fin length; m
L general characteristic length; m
m mass; kg
NuL Nusselt number, � QL� �kAi∆T �
P perimeter; m
p pressure; Pa
Pr Prandtl number
Q heat flow rate; W
R thermal resistance; K�W
R gas constant for air @STP; 287 J�kgK
RaL Rayleigh number, � gβ∆TL 3� �να�
S�
L conduction shape factor, � QL� �kAi∆T �

t time; s
T temperature; oC
T average temperature; oC
∆T temperature difference, � Ti�To; oC
V heater voltage; V
Z compressibility factor

Greek Symbols
α thermal diffusivity; m2�s
β thermal expansion coefficient; 1�K
δ gap thickness, � �do�di��2; m
φ dimensionless temperature excess
λ mean free path; m
Λ thermocouple wire dimensions; m
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µ dynamic viscosity; N � s�m2

ν kinematic viscosity; m2�s
ρ mass density; kg�m3

σ Stefan-Boltzmann constant; W�m2K4

τ time constant, � mcp R; s
θ temperature excess
ξ fin parameter; 1�m
ζ radiation parameter, � σ

�
T 4
i �T 4

o

�
; W�m2

Subscripts
b bulk fluid
i inner body
o outer body
cond conduction
conv convection
rad radiation losses
e f f effective
tot total
� conduction losses
w wire conductor
ins wire insulation

Superscripts
� dimensionless quantity

INTRODUCTION
The problem of natural convection in the enclosed region

formed between an isothermal heated body and its surround-
ing, isothermal cooled enclosure is currently of some interest
to designers of microelectronics equipment. In an effort to pro-
tect electronics from environmental contaminants such as dust
or moisture, circuits are often housed in sealed enclosures, espe-
cially in outside plant applications. The ability to model natural
convection heat transfer within these sealed enclosures would be
of great benefit, providing quick and easy-to-use design tools for
preliminary design tasks such as parametric studies and trade-off
analysis.

Research is currently underway to develop analytically
based models to predict convective heat transfer in these systems.
Of particular importance to the model development process is
the enclosure formed between isothermal concentric spheres, the
most fundamental type of doubly-connected enclosure. It is an-
ticipated that the lessons learned during the development of a
natural convection model for the concentric spheres will be di-
rectly applicable to more complex enclosure geometries.

One of the most important elements in the development of
analytical models is the availability of experimental data over the
full range of the independent parameters. Accurate data are vital
in order to reveal trends, such as limiting cases or transition be-
havior, and for the validation of the completed models. The cur-
rent literature contains only a limited set of experimental data for

Ti

To

di
do

Ti To>

Figure 1. SCHEMATIC OF CONCENTRIC SPHERICAL ENCLOSURE.

the isothermal concentric sphere problem. Bishop et al. (1966)
performed air measurements at atmospheric pressure for a single
outer sphere diameter and four inner sphere diameters, leading to
diameter ratios of do�di � 1�25�1�67�2�0 and 2�5. The data are
limited to a narrow range of Rayleigh number, approximately 1
decade, at the high Rayleigh number, boundary layer flow limit.
Scanlan et al. (1970) performed measurements for water and
silicon oil-filled spherical enclosures, with 4�7� Pr � 4148 for
five diameters ratios ranging from do�di � 1�09 to 2�81. Again,
the data are limited to large values of Radi , and the data are pre-
sented without any means to differentiate between the different
diameter ratios. There are no experimental data in the current
literature for the isothermal concentric spherical enclosure valid
for the full range of Rayleigh number that includes the transition
from convection to conduction-dominated heat transfer.

The objective of the current study is to perform measure-
ments of natural convection heat transfer for isothermal concen-
tric spheres for the full range of Rayleigh number, from the lami-
nar boundary layer flow limit to the conductive limit. The proce-
dure for performing the measurements will be developed, the test
apparatus will be described, and data for four different diameter
ratios will be presented.

PROBLEM DEFINITION
The problem of interest involves convective heat transfer

from a sphere, diameter di, to a concentric spherical shell with
inner diameter do, as shown in Figure 1. Isothermal boundary
conditions exist at both the inner and outer boundaries, as fol-
lows:
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Inner Boundary T � Ti

Outer Boundary T � To

where Ti � To. The total heat transfer rate through the enclosed
region is determined at the inner boundary by:

Q �
� �

Ai

�k
∂θ
∂nAi

dA � θ� T ��r��Tb (1)

where T ��r� is the temperature distribution adjacent to the inner
boundary along an outward-facing normal, and Tb is the bulk
fluid temperature in the enclosure. Assuming constant fluid prop-
erties and non-dimensionalizing yields the dimensionless total
heat transfer rate:

Q�
L �

QL
kAi �Ti�To�

�
L
Ai

� �
Ai

�∂φ
∂nAi

dA (2)

where L is a general scale length and the dimensionless temper-
ature excess φ is defined as:

φ�
T ��r��Tb

Ti�To
(3)

The average heat transfer coefficient for the enclosure h is de-
fined based on the average heat flux at the inner boundary and
the overall temperature difference:

h �
�Q�Ai�

∆T
(4)

where ∆T � Ti� To. Non-dimensionalizing h using the general
scale length L gives the area-mean Nusselt number, which can
be shown to be equivalent to the dimensionless heat transfer rate:

NuL �
hL
k

�
QL

kAi ∆T
� Q�

L (5)

The Rayleigh number is defined using the same parameters:

RaL �
gβ∆TL3

να
(6)

There exists several methods whereby the Rayleigh number can
be varied during experimental testing. Changes to the tempera-
ture difference, ∆T , result in only small variations in RaL , typ-
ically less than 1 decade. Varying the dimensions of the body
requires fabrication and testing of a number of specimens of dif-
ferent sizes. The best method for providing a large variation in

the Rayleigh number for natural convection is through variation
of the fluid properties by a change of the gas pressure, as de-
scribed by Saunders (1936) and Hollands (1988). Varying RaL
by applying a partial vacuum to the test environment allows the
use of a single test specimen operating over a small temperature
difference to easily span four or more decades of Rayleigh num-
ber.

Modeling the air in the enclosure as an ideal gas at bulk tem-
perature Tb gives the following expression for the density:

ρ�
p

R Tb Z
(7)

where R is the gas constant for air and Z is the compressibility
factor for air. Substituting into Eq. (6) gives a new definition for
Rayleigh number as a function of p:

RaL �
gβ∆TL3p2cp

R 2T 2
b kµZ2

(8)

where the fluid properties, β, cp, k and µ, are constant with re-
spect to pressure and are evaluated at the bulk temperature, Tb.
The compressibility, Z, is a function of both the bulk fluid tem-
perature and pressure.

For values of RaL less than some critical value, the heat
transfer in the enclosure is conduction-dominated and indepen-
dent of Rayleigh number. In these cases, the dimensionless heat
transfer rate is equivalent to the dimensionless conduction shape
factor, Q�

L � S�
L , which is defined by Yovanovich as (1998):

S�
L �

L
Ai

� �
Ai

�∂φ
∂nAi

dA (9)

The conduction shape factor is related to the thermal resistance
by:

S�
L �

1
kLR

(10)

Using the exact solution for the thermal resistance of a concen-
tric spherical shell (Incropera and DeWitt, 1996), the conduction
shape factor is:

S�
L �

2L

di

�
1� di

do

� (11)

Since the problem of interest involves only spherical body
shapes and the size of the inner sphere is the only variable ge-
ometric parameter, the diameter of the inner sphere is selected
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Figure 2. SPHERICAL ENCLOSURE WITH 25 mm DIAMETER SPHERE.

as the scale length for all dimensionless parameters, such that
L � di.

EXPERIMENTAL APPARATUS
In order to perform the required measurements, an exper-

imental apparatus was created consisting of a single, spherical
enclosure and a series of inner spheres of various diameters.
The outer spherical enclosure was constructed of two aluminum
blocks with hemispherical cavities machined into one side, as
shown in Figure 2, so as to form a spherical shell when joined
together. Aluminum 6061 was used due to its high value of ther-
mal conductivity to provide a near-isothermal boundary condi-
tion, and the hemispherical surfaces were polished to minimize
radiation heat transfer.

The size of the enclosure was selected based on two main
criteria. First, because many of the tests were to be performed
at reduced pressures, it was necessary that the maximum dimen-
sions of the apparatus not exceed the space available within the
available vacuum chamber. Second, in order to avoid rarefaction
effects the gap spacing between the inner and outer boundaries,
δ, had to be much larger than the mean free path of gas, λ, as
defined by the Knudson number:

Kn �
λ
δ

(12)

The mean free path of air as a function of pressure and tempera-
ture can be determined by (Kennard, 1938):

λ� 6�4�10�8
�

1
p�atm�

��
T �K�

288

�
�m� (13)

Ensuring that Kn � 0�01 for the full range of pressures and tem-
peratures anticipated in the experimental program provides a
lower limit for the outer sphere dimensions. Based on these two
criteria, the dimensions of the outer enclosure were chosen such
that its diameter was do � 120 mm.

In order to provide data for a wide range of diameter ratios,
four different spherical inner bodies were machined from 6061
aluminum. The diameters of the spheres and the resulting diam-
eter ratios are given in Table 1. Each sphere was suspended at
the center of the enclosure using a 4 - 6 mm diameter threaded
phenolic rod turned into tapped holes on both the inner and outer
enclosure walls, as shown in Figure 3. All wiring to the inner
sphere was connected through a single, 6 mm diameter hole at
the top of the enclosure.

All temperature measurements were performed using T-type
copper-constantan thermocouples affixed at the surfaces of the
inner and outer spheres in shallow, small diameter holes using
aluminum-filled epoxy. The temperature at the outer surface
of the enclosure was measured using six 30 AWG (0.254 mm)
thermocouple wires distributed at the top, bottom and midplane,
while the two thermocouples at the top and bottom of the inner
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Table 1. ENCLOSURE DIMENSIONS.

do�mm� di�mm� do�di

120.0 80.0 1.5

120.0 60.0 2.0

120.0 40.0 3.0

120.0 25.0 4.8

Figure 3. DETAIL OF 25 mm SPHERE MOUNTED IN ENCLOSURE

body used smaller diameter, 36 AWG (0.127 mm) wires to re-
duce conduction losses. All thermocouples measurements were
based on an external reference junction that was maintained at
0�0�1oC by an ice point cell.

Each of the inner spheres were heated using an embedded
DC-powered cartridge heater. Constantan wires were used for
all connections rather than copper to reduce heat losses through
the wires; 24 AWG (0.508 mm) to provide power to the heaters
and 36 AWG to measure voltage. The current to the heater was
measured using a calibrated shunt resistor.

The outer enclosure walls were cooled by six cold plates
attached on the exterior surface of the blocks using thermally-
conductive grease at the joints. Heat was removed from the
system using a glycol-water mixture circulated through the cold
plates by a constant temperature bath.

Once assembled, the enclosure test apparatus was placed in
vacuum chamber, as shown in Figure 4, with feedthroughs avail-
able for the coolant, electrical and instrumentation connections.
The vacuum chamber used in this work uses a dual-pump system;
a mechanical roughing pump capable of providing reduced pres-

Figure 4. ENCLOSURE TEST APPARATUS IN VACUUM CHAMBER

sure test conditions suitable for the convection tests, and a dif-
fusion pump for producing a totally evacuated environment for
radiation heat transfer testing. The vacuum system also contains
a high accuracy vacuum gauge suitable for absolute readings in
the range 0.001 - 1 atm.

Data acquisition and control of the experiment was per-
formed using a Keithley 2700 data acquisition system and a
Windows-based PC computer running Labview v.5.1 software.

MEASUREMENT PROCEDURE
The heat transfer rate due to convection through the enclo-

sure, Q, can be determined based on an energy balance on the
inner boundary:

Q � Qtot �Qrad �Q� (14)
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where Qtot is the total heat transfer due to all modes, Qrad is the
net radiative heat transfer between the inner and outer surfaces,
and Q� are the accumulated conduction losses through the wires.
In order to predict Q, a means is required whereby the total heat
transfer rate can be measured, along with a method to quantify
the losses due to radiation and conduction.

Total Heat Transfer Rate
The simplest method to determine the total heat transfer rate

Qtot is through a direct measurement of electrical energy dissi-
pated by the heater during a steady-state test. A fixed voltage
would be applied to the heater and the body temperatures would
be monitored until sufficient time had elapsed such that the tem-
perature change is less than some specified criteria. Then, the
total heat transfer rate would be determined by:

Qtot � VI

where V and I are the heater voltage and current, respectively.
Hollands (1988) reports that, in the case of natural convec-

tion in gases, approximately 5 times the time constant, 5τ, is re-
quired to achieve steady-state conditions, where the time con-
stant is defined as:

τ� mcpR (15)

Due to the relatively large values of the heat capacity, mcp, and
the average thermal resistance, R, for the proposed tests, espe-
cially those to be performed in a reduced pressure environment,
steady-state testing becomes a prohibitively time-consuming op-
tion. Instead, the current study will implement the transient test
method of Hollands (1988) that allows convective heat transfer
measurements to be performed in a fraction of the time required
for steady-state tests. This method is based on the assumption
that, due to the slow rate of change of body temperature, a“quasi-
steady” condition exists where the convective heat transfer is vir-
tually identical to the steady-state results at the same tempera-
ture.

The use of a transient test to measure steady-state convec-
tion in the enclosure can be validated by a comparison of the
time constants for the inner body and the enclosed air layer for
the worst case condition, the smallest sphere, di � 25mm, at at-
mospheric pressure. Using Eq. (15) and textbook values (Incr-
opera and DeWitt, 1996) for the thermophysical properties ρ and
cp, the time constant for the sphere is determined as a function
of the film resistance at the inner boundary:

τi �
�

2770
kg
m3

��
8�18�10�6m3

� �
875

J
kgK

�
�Ri

� 19�8 �Ri (16)

The time constant for the enclosed air layer, τb, is determined
using the same method:

τb �

�
1�1614

kg
m3

� �
8�97�10�4m3� �1007

J
kg��K

�
�Ro

� 1�05 �Ro (17)

where Ro is the film resistance at the outer boundary. Assuming
that the film resistances at the inner and outer surfaces are similar,
Ri � Ro, the ratio of the time constants can be calculated:

τi
τb
� 19 (18)

With a factor of 20 difference between the time constants for the
worst case conditions, it is therefore reasonable to assume that
the cooling rate of the inner body will control the heat transfer
and that a ”quasi-steady” condition exists in the enclosed fluid
region.

In the transient test method, the body is heated to some ini-
tial, specified temperature while the temperature of the enclosure
remains constant throughout the test. When the prescribed tem-
perature difference is reached, the power to the heater is turned
off and the transient response of the inner body is monitored.
Measurements continue until∆T falls below some minimum pre-
scribed value. The total heat transfer rate at any time t and cor-
responding temperature difference ∆T can be determined based
on the transient data by:

Qtot ��mcp
dTi�t�

dt
(19)

where the heat capacity of the inner body, mcp, is determined em-
pirically using a method described in the next section. The time
derivative in Eq. (19) is approximated for distinct time intervals,
tn, using a least-squares method to predict the slope of sets of 101
average inner body temperature versus time data points.

dT
dt

����
tn

� slope �Ti vs� t� for 1� j � 101 (20)

Then, Qtot can be calculated for time tn, corresponding to the
time value of the middle data point:

tn � t j�51

as shown in Figure 5. Corresponding values at time t n for the
remaining parameters, Ti, To, p and V � I, are determined using an
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tn = 1833.5 s tn+1 = 2540.5 s

tn+1tn t (s)

dT
/d

t(
o C

/s
)

-5.8E-03

-5.6E-03

-5.4E-03

-5.2E-03

-5.0E-03

-4.8E-03

T
i

(o C
)

1600 2000 2400 2800
54

56

58

60

62

64

j = 1

j = 1

j = 101

j = 101

Figure 5. CALCULATION OF TIME DERIVATIVE OF TEMPERATURE,

do�di � 1�5.

arithmetic average of 9 values around the middle data point, as
shown below and in Figure 6 for the example of the inner body
temperature.

Ti�n �
1
9

9

∑
j�47

Ti� j (21)

Using this transient test method and data reduction procedure,
Qtot is determined for a number of ∆T values between the start
and end conditions, where the number of points depends on the
heat capacity of the body, the convective conditions and the time
step selected for the measurement.

Heat Capacity and Radiative Losses
The simplest method for determining the heat capacity of an

isotropic body is to measure its mass and multiply by a tabulated
value for specific heat capacity value from a handbook. However,
in the case of the current study the inner spheres are not homoge-
neous but instead contain an embedded cartridge heater, a section
of the phenolic mounting rod and thermocouples. The radiation
heat transfer through the enclosure could also be modeled using
available analytical techniques, but without precise values for the
emissivity of the inner and outer boundaries, it is difficult to pro-
duce accurate results. Therefore, both the heat capacity and the

tn = 1833.5 s tn+1 = 2540.5 s

tn+1tn t (s)

T
i
(o C

)

55.0

57.0

59.0

61.0

63.0

65.0

T
i

(o C
)

1600 2000 2400 2800
54

56

58

60

62

64

j = 47 j = 55

j = 47 j = 55

Ti , n+1

Ti , n

Figure 6. CALCULATION OF AVERAGE INNER BODY TEMPERA-

TURE, do�di � 1�5.

radiative heat transfer for each test case will be determined based
on empirical data.

In order to provide an effective measure of both quantities, a
two-stage test procedure is used. Starting at an initial condition
∆T � 0, a heating test to a maximum value of ∆T is performed to
determine the heat capacity, followed immediately by a cooling
test back to a final ∆T value to measure radiative losses. For
high vacuum conditions, such that Kn � 100, it can be assumed
that gaseous convection and conduction are eliminated and heat
transfer occurs by radiation alone. The energy balance for the
inner body for any time t is:

mcp
dTi

dt
� V � I�Qrad (22)

In the heating test the constant value of electrical power V � I
provided to the heater can be assumed to be large enough such
that non-linear effects can be neglected and Qrad can be assumed
to be a linear function of the factor σ

�
T 4
i �T 4

o

�
. Then Eq. (22)

becomes:

dTi

dt
�

V � I
mcp

� Crad

mcp
σ
�
T 4
i �T 4

o

�
(23)

where Crad is assumed to be constant for each test body. Using a
least squares method to determine the time gradient of the inner
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σ ( Ti
4 - To

4 ) (W /m2 )

d
T

/d
t(
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Figure 7. HEATING TEST DATA

Table 2. HEAT CAPACITY VALUES FOR INNER SPHERICAL BODIES

di�mm� mcp

80.0 653

60.0 279

40.0 82.9

25.0 20.3

body temperature, as described in the previous section, values of
dT�dt can be plotted versus the radiation parameter σ

�
T 4
i �T 4

o

�
,

as shown in Figure 7. Based on Eq. (23) it can be seen that
the y-intercept predicted by the linear fit of the data in Figure
7 can be used to calculate the heat capacity of the body. The
empirical predictions for the heat capacity of each of the inner
spheres tested are presented in Table 2.

Once the maximum ∆T value had been achieved, the heater
was shut down, V � I � 0, reducing Eq. (22) to:

Qrad ��mcp
dTi

dt
(24)

where dT�dt is determined using the least squares approxima-
tion described in the previous section. Figure 8 presents the mea-
sured values of Qrad versus the radiation parameter, σ

�
T 4
i �T 4

o

�
.

As can be seen from Figure 8, the radiative heat transfer is a non-
linear function, due to conduction losses in the connecting rod

Table 3. RADIATION CORRELATION COEFFICIENTS

di�mm� a�1010 b�107 c�104

80.0 59.77 - 19.49 7.642

60.0 7.855 - 1.562 5.255

40.0 9.198 - 2.240 3.350

25.0 1.932 - 0.750 2.147

σ ( Ti
4 - To

4 ) (W /m2 )

Q
ra

d
(W

)

100 200 300 400
0

0.1

0.2

0.3

0.4

0.5
di (mm )

80.0
60.0
40.0
25.0

Figure 8. COOLING TEST DATA

and wires, and temperature dependence of the emissivity. In or-
der to quantify these losses, an empirical relationship is devel-
oped for each inner body based on a third-order polynomial fit,
as shown in Figure 8. The empirical relationship is:

Qrad � aζ3�bζ2� cζ (25)

where ζ is the radiation parameter, σ
�
T 4
i �T 4

o

�
, and the correla-

tion coefficients for each body are presented in Table 3.

Conduction Losses
There are four potential sources of conductive heat loss from

the inner body: the power wires, the voltage measurement leads,
the thermocouples and the connecting rod. This analysis will
consider losses by convection from the wires only; it is assumed
that losses due to radiation from the wires and conduction losses
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through the connecting rod have been accounted for by the cor-
relation of the radiation test data.

The heat loss from each individual wire connected to the
inner body can be modeled as an infinitely long fin (Incropera
and DeWitt, 1996)

Q� �
�

he f f Pw kw Aw �Ti�Tb� (26)

where Pw and Aw are the perimeter and cross sectional area of
the conductor, kw is the thermal conductivity of the conductor
material and Tb is the bulk fluid temperature. The effective heat
transfer coefficient value, he f f , has been modified to include the
conductive resistance of the insulation on the wire, as described
by Sparrow (1976). By assuming a series combination of a con-
duction resistance through a circular annulus and the convective
film resistance at the insulation surface, the effective heat transfer
coefficient can be determined by:

he f f �
1

πdw Le �Rcond �Rconv�

�
1

dw

	
ln�dins�dw�

2kins
�

1
hdins


 (27)

where dins and kins are the diameter and thermal conductivity of
the insulation and Le is an effective fin length. Convective heat
transfer from the insulation is modeled as an infinitely long, hor-
izontal circular cylinder (Raithby and Hollands, 1998):

h �
k

dins

2

ln

�
�1�

2

0�403Ra1�4
dins


�

(28)

where the Rayleigh number is modified to include the gas pres-
sure as described previously:

Radins �
gβ

�
T w�Tb

�
dins

3p2cp

R 2T 2
b kµZ2

(29)

The bulk fluid temperature, Tb is assumed to be the arithmetic
mean of the inner and outer boundary temperatures, �Ti �To��2,
while the average wire temperature is determined from an inte-
gral of the temperature profile of the infinitely long fin:

Tw �
1
Le

� Le

0
T �x�dx �

T �x��Tb

Ti�Tb
� e�ξx (30)

where Le is the effective fin length, determined by solving the
temperature distribution equation for the x�location where 95%
of the temperature drop has occured:

T �x � Le��Tb

Ti�Tb
� e�ξLe � 0�05 (31)

Solving for the effective fin length gives:

Le � �
1
ξ

ln�0�05� � ξ�

�
he f f Pw

kw Aw
(32)

Substituting and solving for the average wire temperature yields:

T w � 0�317Ti�0�683Tb (33)

In the case of the thermocouple wires, where two insulated wires
are wrapped together with an additional insulation layer, ef-
fective wire and insulation diameters and thermal conductivity
are used in the preceding calculations, as described by Sparrow
(1976):

dw�e f f �
�

2dw� dins�e f f � �Λ1 �Λ2��2� ke f f � kw�1�kw�2

where Λ1 and Λ2 are the cross sectional dimensions of the insu-
lation.

Calculation of the conduction losses through each of the
wires and reduction of Q� from the results leads to values of Q
that are less than those of the pure conduction model, Eq. (11),
when the pressure has been sufficiently reduced that the data has
reached the diffusive limit and become independent of Ra. It is
assumed that this overprediction of the wire loss is due to the
approximations used in the model formulation, including the as-
sumptions of a horizontal circular cylinder geometry and infinite
fin length. Due to the complexity of the problem, it may be im-
possible to formulate a model to accurately predict all conduction
losses from the heated body. Therefore, an empirically-derived
coefficient, C�, is introduced to correct the model predictions.

Assuming that the wire loss model correctly accounts for the
variations in temperature and gas pressure and provides a max-
imum value for the total heat loss by conduction, a coefficient
having a range of values 0 �C� � 1 is used to adjust the model
as follows:

Q� �C� 	
N

∑
i�1

Q�� i (34)

9 Copyright  2002 by ASME



Table 4. CONDUCTION LOSSES MODEL COEFFICIENTS

di�mm� Cw Q��Q

80.0 0.05 1 - 2 %

60.0 0.44 1 - 3 %

40.0 0.20 1 - 3 %

25.0 0.32 3 - 8 %

where Q�� i are the model predictions for heat loss from each of
the N wires. The value of C� for a particular test setting is deter-
mined so as to minimize the percent difference between the data
and the conduction model, Eq. (11), when the pressure has been
sufficiently reduced that the data has reached the diffusive limit.
Values of C� and the relative portion of the overall heat transfer
attributed to conduction losses through the wires are given in Ta-
ble 4 for each test case. The differences in C� values in Table 4
are due to variations in wire length, material and orientation as
well as body and heater size.

Test Method
With the measurement procedure and data reduction tech-

niques defined, the test method is established as follows.

1. Assemble test body in enclosure, fit cold plates, and install
completed assembly in vacuum chamber.

2. Seal vacuum chamber and start mechanical and diffusion
pumps to establish high vacuum conditions �Kn � 100�.

3. Perform heat capacity and radiation heat transfer tests.
4. Analyze data to obtain mcp and Qrad correlation.
5. Perform convective heat transfer measurements, starting at

atmospheric conditions.
6. Reduce air pressure in chamber and repeat convection mea-

surements, such that at least two tests are performed per
decade of Radi and the data overlaps.

7. Continue reducing pressure and repeating convection tests
until diffusive limit is achieved for at least two decades of
Rayleigh number.

8. Analyze data to correct for conductive losses.

RESULTS
Measurements were performed for each of the four inner

sphere diameters given in Table 1 according to the test method
described in the previous section. The enclosure was maintained
at a constant temperature of 22 oC, and the starting and ending
values for the temperature difference for the transient convec-
tion tests were 50 oC and 10 oC, respectively. Figure 9 presents
all data collected for the do�di � 2 tests, and demonstrates the
overlap between data for subsequent tests performed at different
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Figure 9. RAW CONVECTION TEST DATA
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Figure 10. CONVECTION TEST RESULTS

pressure levels. Data are selected from each pressure range to
provide a smooth transition and a continuous set of data over the
full range of Rayleigh number. The resulting final data sets for
each of the four enclosure geometries are plotted in terms of the
dimensionless parameters Nudi and Radi in Figure 10.
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Figure 11. COMPARISON WITH PREVIOUS DATA, do�di � 2�0

A number of observations can be made concerning the data
and its trends, as seen in Figure 10. First, the goal of this work,
to conduct measurements over a wide range of Rayleigh num-
ber, has been achieved with data being generated over at least 4
decades of Rayleigh number in all cases. Second, the data are
in excellent agreement with the conductive limit and show inde-
pendence of Radi for at least two decades of Rayleigh number.
Finally, the data indicate a smooth transition from convection to
conduction-dominated heat transfer that occurs within a single
decade of the Rayleigh number.

In Figure 10 a model for the isolated, isothermal sphere (Lee
et al., 1991) is included, which is equivalent to the limit of an
infinitely large enclosure, do�di 
 ∞

Nudi � S�
di
�F�Pr�GdiRa1�4

di
(35)

where the diffusive limit S�
di
� 2 and the body gravity function

Gdi � 0�879 for the sphere. The value for the Prandtl number
function for air at STP is F�Pr� � 0�513. As expected, the iso-
lated sphere model provides an upper bound to the data at the
laminar boundary layer flow, high Rayleigh number limit. From
Figure 10 it can be seen that, for do�di � 4�8, the dimensions of
the enclosure in relation to that of the inner body are large enough
such that the system behaves similar to the isolated sphere. As
do�di decreases, the enclosure walls start to have a larger effect,
leading to a reduction in the heat transferred for a given value of
∆T .

Figure 11 compares the experimental data of the present
study with the air data of Bishop et al. (1966) for d o�di � 2. The
Bishop data were measured for larger values of Rayleigh number
than were possible in the current test apparatus, so a direct com-
parison of the data cannot be performed. However, by extrapo-
lating a best fit line from the present data as shown by the dashed
line in Figure 11, the good agreement between the measurements
and the data of Bishop et al. (1966) can be demonstrated.

SUMMARY
An experimental procedure and apparatus for perform-

ing measurements of natural convection between an isothermal
sphere and its surrounding enclosure have been described. The
goal of the research project, to provide data over a wide range
of Rayleigh number including the transition and diffusive limit,
was achieved through the use of a transient test procedure per-
formed in a reduced pressure environment. The proposed tran-
sient test method was shown to produce highly accurate data in
a much shorter time than the more traditional, steady-state meth-
ods. Four different inner spherical bodies were tested and the
data were shown to be in excellent agreement with the exact solu-
tion for conduction between spherical shells. The data were also
compared to existing data from the literature, and were shown to
be bounded by the limiting case of natural convection from an
isolated, isothermal sphere.
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