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Effects of Geometry and Orientation on Laminar Natural
Convection from Isothermal Bodies

S. Lee,* M. M. Yovanovich,{ and K. Jafarpurt
University of Waterloo, Waterloo, Ontario, Canada

The effects of body shape and orientation on laminar natural convection heat transfer from isothermal,
two-dimensional, and axisymmetric bodies are investigated. A new form of the body-gravity function is
presented and its behavior is examined for various body shapes and orientations. The square root of the total
surface area is obtained from the analysis as the charateristic body length. A definition of the aspect ratio is
introduced, which can be used consistently for both two-dimensional and axisymmetric bodies. The resulting
body-gravity function is observed to be weakly dependent on geometry and orientation of the bodies for a range
of the aspect ratio from approximately 0.2 to 5, over which the body-gravity function resuited in a good
agreement with values obtained from the existing experimental data.

Nomenclature
=total surface area
= fraction of sectional area over 4
=local surface area
= vertical axis of spheroid or ellipse
=correlation constant
= horizontal axis of spheroid or ellipse
=laminar heat transfer coefficient
=diameter of sphere or circular cylinder
=measure of eccentricity defined by Eq. (30)
(Pr) =Prandtl number function
= Prandt] number function as Pr — o
= gravitational acceleration
= body-gravity function based on £
=vertical height of the body
= heat transfer coefficient
L1 =integrals defined by Eqs. (29) and (33)
91,9, =integrals defined by Eqgs. (39) and (40)
k =thermal conductivity of fluid
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L =length of the body

£ =characteristic length of the body

L. = classical characteristic length

m,n = correlation parameters

Nug = area-mean Nusselt number A £/k

Nu®  =diffusive limit Nusselt number as Ra — 0
P = local perimeter of the body

Pnax =maximum perimeter of the body

Pr = Prandtl number, v/«

r =dimensionless local horizontal radius

Rag  =Rayleigh number, g8(T, - T))L¥av
T =uniform surface temperature
T; = fluid temperature remote from the body
u =dimensionless local velocity x direction
v = dimensionless local velocity in y direction
x =dimensionless coordinate parallel to the flow stream
y = dimensionless coordinate outward normal
from surface
=thermal diffusivity of fluid

[+ 3

8 . =thermal expansion coefficient

¥ =aspect ratio defined by Eq. (24)

€ = measure of eccentricity, e = —e?
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] =angle between outward normal and gravity vector
v =kinematic viscosity

$ =dimensionless temperature, (T — T)/{To—Ty)
¥ = half-apex angle of cone

Subscripts

DC =vertical double cone base-to-base

ED =vertical eiliptic disk

HC = horizontal cylinder

SC = vertical single cone

SP = spheroid

vC =vertical cylinder

Introduction

AMINAR natural convection heat transfer from isother-

mal bodies of various shapes and different orientations
with regard to the gravity vector has been the subject of
numerous investigations over the past several decades. Analyt-
ical, numerical, and experimental results are reported for the
area-mean Nusselt number Nu as a function of the Rayleigh.
Ra and Prandtl Pr numbers for a given body shape, each with
a choice of the characteristic length used in the definitions of
the Nusselt and Rayleigh numbers. The characteristic length
represents a physical dimension that may be chosen from
several possible length scales associated with a specific body
shape under investigation. Some conventional choices for the
characteristic length include the diameter, the major or minor
axis, a combination of the semiaxes, and the streamwise length
of the body.

Although such and any other choices are sufficient in evalu-
ating the heat transfer coefficient for given body shapes, they
appear to be somewhat arbitrary and, in some cases, irrelevant
representations of the length scales that are participating in the
thermal/fluid mechanism driving the heat transfer phenom-
ena. The magnitude of the reported Nusselt numbers, at a
fixed value of the Rayleigh number, varies considerably not
only from one shape to another but also for different choices
of characteristic length. As a result, when a body of different
shape is encountered, it is often difficult to estimate the value
of the heat transfer coefficient from the existing relationships.
Much needed attention was recently given by some research-
ers'~® who examined existing and new choices of the character-
istic length in an artempt to bring together the Nu vs Ra plots
for external natural convection heat and mass transfer from
various body shapes and different orientations.

"Convective heat transfer from an isothermal body to a
surrounding fluid is a surface phenomenon. It is, therefore,
reasonable to anticipate that a definition of the characteristic
body length should be related to the surface area of the body.
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in this study, a new form of the body-gravity function,
which describes the Nu dependency on the body shape and its
orientation with respect to the gravity vector is introduced.
The function is obtained based on the thin boundary-layer
analysis, and the square root of the total surface area of the
body \/j is found to be the proper choice for the characteristic
length by examining the new body-gravity function for various
body shapes and different orientations. This characteristic
length was first proposed by Yovanovich,*$ who successfully
demonstrated its superiority to the classical body lengths in
bringing together Nu vs Ra plots using published heat transfer
results. .

Background Considerations

Numerous analytical and empirical expressions are available
in the literature for predicting natural convection heat transfer
from isothermal bodies of various shapes and orientations to
an extensive, quiescent fluid that is maintained at uniform
temperature. The earliest and perhaps the simplest expression
has the form

Nu =CRa™ (1)

This simple expression is found to be adequate®¢ for Rayleigh
numbers of the order of 10° to 103, which correspond to the
laminar boundary-layer flow regime.

As the Rayleigh number becomes smaller, however, the
effect of thermal diffusion becomes significant, and the above
form of equations begins to fail by underpredicting the data.
In an attempt to improve the prediction in the small Rayleigh
number range, other forms of expressions were considered
that include

Nu =B+ CRa™ )

and the one introduced by Churchill and Chu’ in the following
blended manner:

Nu = [B" + (CRa™y'" 3
where m is set to be 1/4 based on the theoretical boundary-
layer analysis. The empirical constant # is found by a best fit
10 a given set of data and it can range from 1 to 15, depend-ing
on the body shape and its orientation.®® Values of B may be
determined either by means of a data fitting technique or by
considering the pure diffusion heat transfer that corresponds
to Ra — 0. The parameter C is, in general, dependent on Pr,
m, and # values, and on the characteristic body length £ used
in defining Nu and Ra.

With a choice of the characteristic length and parametric
values obtained from either analytical or experimental results,
the above expressions were used with success to correlate data
for various body shapes in different fluids. Unfortunately, the
reported values of the parameters vary significantly between
body shapes, and the characteristic length is often arbitrarily
chosen prior to the analysis. No theoretical or analytical basis
is available in most studies to support a particular choice of
the characteristic body length and to predict values of the
parameters that are necessary in estimating heat transfer from
a body of different shape or orientation.

In view of predicting the heat transfer characteristics of
different body shapes from available data, many researchers
observed an important role of the characteristic body length.
With a proper choice of the characteristic body length, the
scatter in the Nusselt number may be reduced over a wide
range of body shapes and aspect ratios. Many different char-
acteristic lengths were proposed in the past and they are sum-
marized by Yovanovich.? In particular, Yovanovich® proposed
the square root of the body surface area as the characteristic
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length and then subsequently developed a correlauon equation
of the form given by Eq. (2): '

Nu = Nul, + CyzRa% @)

for0 < Ray; < 108 The subscript is used to indicate that the
parameters are determined or defined based on £ = VA. The
parameter B was replaced by Nu7 In an earlier work of
Yovanovich* on Nu°A for isothermal bodies of arbitrary shape
at near zero Rayleigh number, the superiority of the square
root of the body surface area to the classical body lengths was
demonstrated as the values were shown to collapse into a
relatively narrow range for various body shapes. Body shapes
including elliptic disks, prolate spheroids, and right circular
cylinders with aspect ratios ranging from 1 to 8 were examined
in his study. The aspect ratio was defined as the ratio of the
height to the width of the body All reported diffusive limits
lie in the range 3.180 =< Nu . < 4.080, and there is only a
28% difference between the " minimum and maximum values
corresponding to the hexagon and an elliptic disk with an
aspect ratio of 8, respectively. More body shapes such ‘as
oblate spheroids, sphere, bisphere, and cubes in different ori-
entations were exammed in Ref. 6. The additional results lie in
the range 3.342 < Nu o =3.545 with 2 maximum difference
of only 6%. The minimum value corresponds to the thin
oblate spheroid of 0.1 aspect ratio, and the maximum value
corresponds to the sphere whose aspect ratio is 1.

The laminar heat transfer coefficient Cyz in Eq. (4) is an
empirical correlation coefficient, which was determined from
the air data by means of a least-squares fit. Typical values of
C.5 range from 0.477 for a bisphere to 0.526 for a sphere.*
Other C,3 values of various body shapes examined in Ref. 6
are all bounded by the above range.

Yovanovich®¢ was successful in collapsing the published
heat transfer data into a narrow range by choosing the square
root of the body surface area as the characteristic length over
the range 0 < Ra;; <108 He proposed a single expression
that is extremely simple and general for ‘‘rough’ estimates
with a percentage difference of approximately 8% over a wide
range of body shapes and aspect ratios.

Although «/A was shown to be a superior characteristic
length, and Nu’ o was observed to be a weak function of body
shapes, there is at present no theoretical basis that 1) demon-
strates that VA is the preferred characteristic length in laminar
natural convection heat transfer and 2) explains why the lami-
nar heat transfer coefficient C,5; is relatively insensitive to
body shapes and orientations.

In the following sections, the body-gravity function and,
therefore, Cy5 are shown to be weak functions of body shapes
and orientations over a wide range of aspect ratios. The VA
is deduced, based on the analysis, as the characteristic body
length.

Analysis

Only the laminar part of heat transfer, as indicated by
CRa™ in the previous section, is of interest in the present
study. Consider steady, laminar natural convection heat trans-
fer from isothermal bodies to an extensive, quiescent fluid.
The bodies are either two dimensional or axisymmetric and are
free of pockets and horizontal planes. A section of the body
surface and the coordinate system are shown in Fig. 1. By
assuming that the boundary layers are thin, the usual set of

D\ ig

Fig. 1 Body surface and coordinate system.
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dimensionless governing equations that describe laminar mo-
mentum and heat transfer in the fluid may e wiitten as

3 P d P
&<uz> +5<v:c-)—0 5)

2
1 ugliﬁ-vg‘- =a—u.,+Rag‘1>sin0 ©)
ax 3y ay?

ug+va—¢-—-a—z—?- 7
ax dy  ay?

For two-dimensional bodies, the parameter P/£ may be omit-
ted from Eq. (5). For axisymmetric bodies, P is related to 6 as
will be seen later. An arbitrary length scale £ and a velocity
scale o/ £ were used to nondimensionalize corresponding vari-
ables in the above equations.

The hydrodynamic and thermal boundary conditions asso-
ciated with the above equations are

aty= 0, u=v=_0, =1 (8a)
as y — oo, u-—0, $ -0 (8b)
atx = 0, u=9%°-=0 (8¢)

The no-slip condition is used on the body, and the zero veloc-
ity condition is used at locations remote from the body where
the fluid temperature is assumed to be uniform.

Solutions to the above set of laminar boundary-layer equa-
tions for Pr — o can be obtained by similarity methods as
demonstrated by Acrivos'® and Stewart.!! A large Prandtl
number not only allows one to neglect the convection terms on
the left side of the momentum equation, Eq. (6), but also
further ensures that the thermal boundary layer is thinner than
the momentum boundary-layer thickness. It can be shown by
integrating the resulting local Nusselt number expression over
the surface area that the area-mean Nusselt number may be
expressed as

Nug = F,GeRa} )

where the constant coefficient F,, is related to the outward
normal surface temperature gradient with respect to the simi-
larity variable and has a value of 0.670. The body-gravity
function G is a geometric funcrion that exclusively accounts
for the effects of body shape and its orientation with respect to
the direction of the gravity vector. It may be expressed in the

form
1 P sing \'° v
Ge = [Z XL <————A "o ) d@ (10)

This function can also be derived from the relationship ob-
tained by the Raithby-Hollands approximate method,!%!
which was developed by applying the integral method over the
part of the boundary layer near the surface where both mo-
mentum and heat transfer due to convection are assumed
negligible.

The above area-mean Nusselt number, Eq. (9), is derived
for the limiting value as Pr — oo, In order to account for the
Prandtl number effect, the coefficient F,, is replaced by a
universal Prandtl number function F(Pr) proposed by
Churchill and Churchill (also see Churchill and Thelen!®). It
is applicable for arbitrary body shapes and is given by

0.670
[1 + (0.5/Pry* 16}

F(Pr)= S (3)
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Insofar as the analysis for thin, laminar boundary-layer
heat transfer from a two-dimensional or axisymmetric body
shape is concerned, the coefficient C; can be evaluated from

Ce = F(Pr)Ge (12)

and an arbitrary length scale £ may be used as the character-
istic length. However, in view of bringing together the Nug vs
Rag plots for laminar natural convection heat transfer from
various body shapes, a further investigation is required for the
choice of the characteristic length.

Characteristic Length

Consider the body-gravity function given by Eq. (10). The
numerator P sinf appearing in the integrand is the local
perimeter weighted by the tangential component of the unit
gravity vector. This length parameter, when multiplied by the
thickness of the boundary layer, represents the local cross-sec-
tional area of the thin boundary layer through which the
effective buoyant force is induced upon the fluid. One option
to nondimensionalize this parameter is to normalize it by its
maximum value P,,,. This leads to

£ = A/Poa (13)

This length scale is sensitive to orientation. It is similar to
the one proposed by Weber et al.,’ who reported success in
bringing closer together the laminar natural convection
boundary-layer solutions for a number of bodies, most of
which are also considered in the present investigation.

Another option is to choose the denominator of the inte-
grand in Eq. (10) A/£ to be the nondimensionalizing length
scale for the local length parameter P sinf. In this case, the
denominator itself should be considered as the characteristic
length, and it follows that 4/£ = £ or

£L=vAa 14

Unlike the length scale defined by Eq. (13), this characteristic
length is insensitive to orientation. ’
The G values with £ specified by the classical body length
L, A/P,ax and VA are tabulated in Table 1; the data are

obtained from Refs. 6 and 9. See Fig. 2 for schematics of the -

body shapes, dimensions, and orientations referred to in the
table.

Table 1 shows that the values of the body-gravity function
lie in the ranges 0.627 < G, = 0.956 with a maximum
deviation of 53%, 0.613 < G4/p < 0.956 with a maximum
deviation of 56%, and 0.768 =< GVA < 1.058 with a maxi-
mum deviation of 38%. The minimum G values all corre-
spond to the thin oblate spheroids with a/b = 0.1. The
maximum G values correspond to the vertical circular cylin-
ders with hemxsphencal ends for £ = L.and A/Pqax, and the
flat square disks in orientation 2 for £ = vA. When thin,
horizontal bodies, such as the thin oblate spheroid with a/b
= 0.1, short vertical cylinder with L/D = 0.1, and flat
square disk in orientation 3 are excluded, the above ranges
become significantly narrower as the minimum values of Gg
increase to 0.738, 0.805, and 0.928 for £ = L., A/Pnas,
and VA, respectively. These minimum values correspond to
the bispheres for £ = L. and VA and the oblate spheroid
with a/b = 0.5 for £ = A/Pn.. Accordingly, the above
maximum deviations in the G values become 30%, 19%, and
14% for £ = L., A/Pq., and VA, respectively.

In addition to the above findings, an interesting observation
is made regarding the sensitivity of the characteristic length
with respect to the orientation of the body. According to
Weber et al.,? the first of three criteria for selecting a charac-
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Table 1 Body-gravity functions obtained from experimental
data®? for various body shapes based on different
characteristic length scales

Body shape Le, G, GArP s Gva
Sphere D, 0.887 0.887 1.023
Vertical bisphere D, 0.738 0.877 0.928
Cylinder (L/D = 1) (5.4 (1.1) 5.4

Axis-vertical D, 0.797 0.882 0.967
Axis at 45 deg D, 0.827 0.872 1.004
Axis-horizontal D, 0.839 0.875 1.019
Cylinder (L/D = 0.1) (31.6) (43.8) (31.6)
Axis-vertical D, 0.713 0.628 0.772
Axis-horizontal D, 0.939 0.903 1.016
Cylinder with hemi-
spherical ends (14.6) (9.0) 3.7
Axis-vertical H, 0.956 0.956 1.012
Axis-horizontal D, 0.834 0.877 1.049
Spheroid (a/b = 1.93) a, 0.841 0.934 1.012
Spheroid (a/b = 0.5) b, 0.766 0.805 0.973
Spheroid (a/b = 0.1) b, 0.627 0.613 0.768
Cube (6.6) (5.8) (6.6)
Orientation 1 L, 0.760 0.841 0.951
Qrientation 2 L,0.791 0.836 0.990
Orientation 3 L, 0.811 0.884 1.014
Square disk (27.9) (46.0) (27.9)
Orientation [ L, 0.931 0.952 1.039
Orientation 2 L, 0.948 0.895 1.058
Orientation 3 L, 0.741 0.652 0.827

aNumbers in brackets represent maximum percentage differences in G, values
for the same body shape in different orientation.

teristic length was ‘‘the length would change for the same
particle in different orientations.”” However, an examination
reveals that 4 / Pn,, Which is sensitive to body orientations, is
inferior to the other two characteristic lengths, which are
insensitive to body orientations. Consider the values indicated
in the brackets in Table 1. They represent the maximum per-
centage differences in Gz values incurred due to only the
changes in orientation of fixed body shapes. Although the
circular cylinder with L/D = 0.1 and the flat square disk show
large differences between the maximum and minimum Gg
values for any characteristic length, the differences are largest
when & = A4/Pqg., is used as the characteristic length, and
they are in excess of 40% for both body shapes as indicated in
the table.

Based on the above observation, VA4 is clearly shown to be
the superior choice of the characteristic length in narrowing
the range of the values of the body-gravity function for the
various bodies examined in Table 1. This characteristic length
is identical to the one proposed by Yovanovich,* who demon-
strated its superiority in his study of Nusselt numbers in the
diffusive limit. In this limit as Ra — 0, heat transfer is entirely
due to conduction and, therefore, is independent of orienta-
tion. This allows one characteristic length VA to be used
throughout the diffusive and laminar regimes 0 = Rayz <
108. Other characteristic lengths, such as those summarized in
Ref. 4, are examined also and are shown to be inferior to va
in narrowing the ranges of G¢ and, in turn, the resulting Nug.

Body-Gravity Function

The expression of the area-mean Nusselt number, ob-
tained as a result of the thin laminar boundary-layer analysis
from the previous section, is summarized as

Nuyz = F(Pr)G zRa” (15)

VA

where F(Pr) is given by Eq. (11), and Gz is obtained from
Eq. (10) as

1 ([ /Psing \" e :
LB
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Fig.2 Body shapes, dimensions, and orientations.

In addition to the above general expression for the body-
gravity function, the following expressions are useful when a
body shape under investigation consists of two or more dis-
tinctive body shapes in combination. As an example of such
bodies, a cylinder with hemispherical ends can be considered
as a combination of a cylinder with insulated ends and two
hemispheres. When such bodies are placed in parallel with
respect to the gravity vector, as in the case of a horizontal
cylinder, the bodies are assumed not to be interfering and thus
to be independent of each other. The area-mean average body-
gravity function for such cases with N distinctive bodies can be
obtained from

N
Gia =Y Gz A" an

where Gz, represents the body-gravity function for each sep-
arate body shape, and A; denotes the fraction of each body
area in relation to the total surface area:

Ai=A4/4 (18)

When a combination of N bodies are aligned in series with
respect to the flow stream, as in the case of a vertical cylinder
with hemispherical ends, the area-mean average body-gravity
function for the combination can be obtained from

N 374
G = [ Y G¥ /f,,’“] (19
i=1 !

Also, when two-dimensional bodiés, such as a vertical.disk
of an arbitrary shape as shown in Fig. 3, have a va{'lab!e
perimeter P as a function of x, the body-gravity function 1s



212 LEE, YOVANOVICH, AND JAFARPUR

obtained by integrating the result that is evaluated for a differ-
ential surface with a width dz. It follows that

Pm“.’z 3/4

Gia = A—fg j S(z) dz (20)
where S(z) denotes the flow distance from the leading edge to
the trailing edge of the differential surface.

Equations (16-20) are used to evaluate the body-gravity
function for various body shapes. They are compared with the
experimental data%? in Table 2. The values are shown to be in
good agreement, except for the cases of thin body shapes and
the cube in different orientations. In particular, the largest
difference of 12.3% is observed for the thin oblate spheroid,
and this will be discussed in a later section. Excluding the thin
oblate spheroid, the differences for the remaining axisymmet-
ric bodies included in the table are all less than 2%.

A further examination of the body-gravity function given
by Eq. (16) reveals the qualitative behavior of the function
that may explain why this function and, therefore, the area-
mean Nusselt number are relatively insensitive to the geometry
and orientation of body shapes. Consider axisymmetric bodies
of an arbitrary shape that do not possess pockets and horizon-
tal surfaces as shown in Fig. 4. Introducing r, sinf can be
related to r from the relation

ino=_[1- <ﬂ>z @1
S = e )

0

This relationship can readily be rearranged and integrated
over the surface to yield

[ V1-sin%
EPlocalmax —Eplocalmin = WJJV —I;—da (22)
A

where the left side represents the difference in the sum of local
maximum and local minimum perimeters.

U Pau/?

——

5(z)

dz
z —t f—=

Fig. 3 Two-dimensional body with variable perimeter.

Fig. 4 Axisymmetric body.
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If the bodies do not possess surface depressions, this equa-
tion can further be simplified as

{1 -sin®
Pmax=7r \j Td

A

e @3

Since the left sides of Eqs. (22) and (23) are finite for given
bodies, the above expressions clearly illustrate the inverse
relationship that exists between P and sind over an area-inte-
gral. Recalling the body-gravity function given by Eq. (16) and
its variable part of the integrand P sind, it may be stated for
axisymmetric bodies that Gy3 is a weak function of body
shape due to the repeated fractional powers appearing in its
expression and to the effect of the inversely related con-
stituents of the integrand over the area-integral.

Aspect Ratio

The body-gravity function given by Eq. (16) will be evalu-
ated for various body shapes at different aspect ratios. A
number of definitions were used in the past to define an aspect
ratio of a given body. One of the most commonly used defini-
tions would be the ratio of the vertical height to the width of
a body. However, this definition becomes inconsistent and
ambiguous in some cases in which a smooth transition of a
body shape may not be properly reflected by the changes in the
values of the aspect ratio. Consider a horizontal circular cylin-
der as an example. When the length of the cylinder is greater
than the diameter, an aspect ratio may be defined as the
diameter (height) divided by the length (width). But as the
length becomes smaller than the diameter, the aspect ratio
under the same definition becomes ambiguous because the
diameter could also be used alternatively to represent the
width of the body. The aspect ratio of the cylinder in the limit
as the length becomes zero may be either infinite or unity,
depending on the choice for the width of the body.

By considering the numerator of the integrand in Eq. (16),
and by recalling that the equation is applicable for both two-
dimensional and axisymmetric bodies, it becomes apparent
that a definition of the aspect ratio should be related to the
perimeter of the body. This also eliminates the previously
observed ambiguity and ensures a smooth, continuous transi-
tion in the values of the aspect ratios corresponding to gradual
changes in the shape of the body.

Possible options for the aspect rario that satisfy the criteria
observed above include ratios such as VA /Py, and 74/PZ,,.
However, while thin, flat bodies are perceived to have small or

Table 2 Comparison of body-gravity functions:
analytical vs experimental

Gz Gia
Body shape ¥ Eq. (16) Exp. % difference

Sphere 1.000 1.014 1.023 -0.9
Vertical bisphere 2.000 0.930 0.928 0.2
Cylinder (L/D=1)

Axis-horizontal 0.785 1.051 1.019 3.1
Cylinder (L/D =0.1)

Axis-horizontal 1.428 1.088 1.016 7.1
Cylinder with hemi -

spherical ends

Axis-vertical 2.000 0.994 1.012 -1.7

Axis-horizontal 0.611 1.038 1.049 - 1.0
Spheroid (a/b=1.93) 1.930 1.003 1.012 -0.9
Spheroid (a/b =0.5) 0.500 0.954 0.973 -1.9
Spheroid (a/b =0.1) 0.100 0.674 0.768 - -123
Cube

Orientation 2 0.920 1.080 0.990 9.1

Orientation 3 1.283 1.091 1.014 7.5
Square disk

Orientation 2 1.467 1.118 1.058 5.6
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zero aspect ratios in the limit, these definitions do not allow
ratios 10 become smaller than fixed nonzero finite values. As
an example, the aspect ratio defined by =A/P2,, for a flat,
horizontal circular disk of zero thickness is 1/2. Moreover, the
aspect ratio that involves the total surface area in its definition
often results in complex implicit expressions that need to be
evaluated in the course of computing G. 7 .

In light of the above discussions, the following definition of

the aspect ratio v is proposed:

H
Poax /7

Y= 24

A constant 7 is introduced dividing Pmax such that y becomes
unity for spheres.

Case Studies and Discussions

In the following, the body-gravity function is examined for
two-dimensional and axisymmetric bodies of various shapes in
different orientations over a wide range of aspect ratios. For
the schematic configurations and dimensions of the bodies,
refer to Fig. 2. Expressions for the body-gravity function and
the aspect ratio are obtained for each body shape. The sub-
script VA is omitted for brevity, and new subscripts are used
to distinguish the corresponding body shapes. The results are
tabulated and plotted as a function of ¥ and compared with
G.5 obtained from the experimental data of other investiga-
tors.

Two- Dimensional Bodies

Vertical elliptic disks and circular and elliptic cylmders in
vertical and horizontal orientations are examined as two-di-
mensional bodies. Although a cylinder has a finite volume and
is thus a three-dimensional body, its body-gravity function can
be obtained by using the two-dimensional analysis. Vertical
flat plates are the limiting case of elliptic cylinders as their
minor axes become zero. The ends of the cylinders in axis-ver-
tical orientation are horizontal surfaces and therefore are ex-
cluded from the analysis by assuming that they are insulated.
The corner effects around the edges of end surfaces of the
horizontal cylinders are ignored.

Vertical Elliptic Disks
From Eq. (20), which is developed for two-dimensional
bodies with variable P, one obtains

.

Gep=1.178 y''2 (25)

where
y=mna/2b . (26)

Vertical Elliptic Cylinders or Flat Plates—Ends Insulated
From Eq. (16),

Gyc = 1.154y"1/8 27
where )
v= wL/al, (28)
= j V1 —ecos?d df 29)
0
el=1 - (b/a) (30)

For a flat plate, a becomes the width, & = 0, and I, = 2. Since
Gyc is only a function of v, it can be seen that the expression
for the body-gravity function with respect to y for a flat

LAMINAR NATURAL CONVECTION FROM ISOTHERMAL BODIES 213

verticai plate is identical to Gyc. Note that the value of the
coefficient of Gyc is only 2% smaller than that of Ggp.

Horizontal Elliptic Cylinders—Ends Insulated
It may be expressed from Eq. (16) that

2 § 1/8
Gre = <—’5’—6) @1)
v
where
y=wa/2L (32)
= \ [sind(1 - e*cos?®)}? dd (33)
vo

and /, and e? are defined previously by Egs. (29) and (30).
Here, ais either the major axis when a/b > 1 or the minor axis
when a/b <1. ]

Horizontal circular cylinders correspond to the case where
a/b = 1. For this case, I; becomes = and /; becomes 2.387.
Then, the above expression for Gyc reduces to-

Gpe = 0.943y71/8 (34)

This is approximately 20% smaller than Gy for a fixed value
of v. The difference between Gy and Gy diminishes as b/a
becomes small. When &/a is equal to zero, Gyc becomes
identical to Gyc and both horizontal and vertical cylinders
become flat vertical plates.

The above expressions do not account for heat transfer
through the end surfaces of the cylinders. The present analysis
is invalid for horizontal surfaces due to the assumption of the
thin boundary layer. Hence, it is not capable of dealing with
the horizontal end surfaces of the vertical cylinders. In the
case of a horizontal cylinder, however, the effects of the end
surfaces may be accounted for by treating the end surfaces as
isolated vertical disks in a parallel combination with the cylin-
der as follows.

Horizontal Elliptic Cylinders —Ends Included

The body-gravity function for horizontal elliptic and circu-
lar cylinders, where all the surfaces are participating in heat
transfer, may be obtained from Eq. (17). In terms of the above
Grc and Ggp, it leads to

Grc + ep = GucA]? + GepAip YA (35)

where the subscript HC + ED represents the combined effect
of the horizontal cylinders and the vertical elliptic disks of the
same b/a ratios.
The aspect ratio of the horizontal elliptic cylinders is given
by
Ta
=2 +b) 36)
and Gyc and Ggp are given by Egs. (31) and (25), respectively.
The aspect ratios defined by Eqs. (32) and (26) are given
exclusively for Gy and Ggp. It is to be noted therefore that,
in evaluating Gyc and Ggp in Eq. (35) for Guc + ep, both
aspect ratios have to be modified in relation to the above «.

Axisymmetric Bodies

Spheroids, vertical cylinders with hemispheroidal ends, and
vertical double cones base-to-base are examined as axisymmet-
ric bodies.

Spheroids
From Eg. (16), it can be obtained that
21rs§>”‘
Gsp = <——— ) G
) SP ’YSZ
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where and Gse denotes the boay-gravity function obtained for a
y=a/b 38) single vertical cone with end surface insulated:
. Gsc = 1.222 (cos® ¢ siny)!/8 (48)
= VI —oif2
g,' B ZL I-efrtar (39) In addition to the body shapes described above, the case of
horizontal circular cylinders with hemispherical ends is in-
| cluded. This is neither a two-dimensional nor axisymmetric
body, but a mixture of two bodies in a parallel combinati
= = 12Y(] — 2272)]173 Y, P ation.
9= 2L (=501 - e%H) dt (40) Therefore, from Eq. (17), one obtains

Notice the striking similarity that exists between the expres-
sions of Gsp given above and Gyc given by Eq. (31).

Explicit expressions for 9, are available. For prolate
spheroids where ez > 0,

o=l
9 =Vi-ét +i“‘73 ' @1)
For oblate spheroids where e2 < 0, or e = ~¢2 > 0,
s We+V1+é
g =vite + MerVlre) (42)
€

And for spheres where e? = 0, 9, becomes 2 and 9, becomes
1.684, resulting in a constant for Gsp as

Gsp = 1.014 43)

Vertical Circular Cylinders with Hemispheroidal Ends

This case is an in-line combination of a vertical circular
cylinder and hemispheroids whose horizontal diameter b is
equal to the diameter of the circular cylinder. From Eq. (19),
the body-gravity function can be obtained as

Gre + sp = (Gy2AVE + GPALSH (44)
where Gy is given by Eq. (27) and Gsp is given by Eq. (37).

Again, the parameters on the right side of the above equation
need to be evaluated in terms of v defined by

vy=(a+L)b : (45s)

Vertical Double Cones Base-to-Base

Evaluating Eq. (19) for an in-line combination of two iden-
tical cones,

Gsc 72 1/8
Goc =55 =1.121 | ———==
2 1+ (46)
where :
¥ = coty ¢ @7
2
Gve
Lep D
1.8 k‘ \ — — = Grceep (a/b=10.35)
.'4\\ - '+ b=
1 45 el e Guceep {afb=1)
“‘\ o Rae.. e Gucsep (af/b=12)
L2P N e oSSspmaoal L
[\l e——
G./‘,{ 1 \\___,/ o) 5 s ~_‘~\
.8
6
s
2+

0 .
8 .2 .4 .6 .B 1 .8 .5 .4 .2 O
' f Yy —

Fig. 5 Body-gravity function vs aspect ratio for two-dimensional
bodies.

Guc + sp = GucAj¢ + GpALE (49)

where Gy for horizontal circular cylinders is given by Egq.
(31), and Gsp for spheres is given by Eq. (43). The aspect ratio
is given by

2L

-1
Y= [1 +5] (50)

The two-dimensional body-gravity functions for the vertical
cylinders, elliptic disks, and horizontal cylinders with a/b =
172, 1, 2 are computed with respect to v. They are tabulated in
Table 3 and plotted in Fig. 5. The maximum value of v of a
horizontal elliptic cylinder with a fixed a/b occurs when the
cylinder becomes a disk at L = 0. As shown in the figure, the
body-gravity function of the cylinder becomes identical to that
of an isolated disk as L approaches zero, or equivalently, as
+ approaches its maximum value as it should. Also, the exper-
imental data from Table 2 for the case of horizontal circular
cylinders (a/b = 1) are included in the figure as discrete
points.

The body-gravity functions for the cases of the axisymmet-
ric bodies and the horizontal cylinder with hemispherical ends
are also tabulated in Table 3 and plotted in Fig. 6. Two cases
of vertical cylinders, one with thin semioblate spheroidal ends
where a/b = 0.2 and another with hemispherical ends where
a/b = 1 are included in the table and the figure. The experi-
mental data from Table 2 for the spheroids and circular cylin-
der with hemispherical ends are compared in the figure. An
excellent agreement is revealed, except for the case of the thin
oblate spheroid.

As mentioned throughout this study, the present analysis is
developed under the assumption of thin boundary layer. It is
insufficient in predicting heat transfer from bodies of small
and large aspect ratios. At large aspect ratios, both two-di-
mensional and axisymmetric bodies become vertically elon-
gated shapes. In the limit as v — o with Ray3 fixed, the
bodies become infinitely long and thin and, hence, the as-
sumption of thin boundary layer becomes invalid. A number
of publicarions exist in the literature dealing with this type of
problem.!6-i8

2
° G
1.8 i
""" Gvcese (a/b=0.2)
1.6 a { Gucase (afb=1) fory < 1
1.4 Guesse (afb=1)for 1/y <1

Gua

.Illlllll)/l'l’_llﬁ

L2k
OhLl 1 1 i 1 1 1 1 i 1. 1 i 1 1 I 1 1 1
o .2 .4 .6 .8 1 .8 .6 .4 .2 O
' 7 : /v -~

Fig. 6 Body-gravity function vs aspect ratio for axisymmetric bodies
and horizontal circular cylinder with hemispherical ends.
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¥
Table 3 Bouy-gravity functions for various body shapes: analytical resuits

Two-dimensional bodies

Axisymmetric bodies

—GHc + ED__ Gve + sp
¥ 17y Gve Gep (@76 =10.3) (@b=1 (a7b’=12) Goc Gsp (a/b =0.2) G2
0.1 — 1.539 1.571 1.063 1.267 1.416 0.629 0.674 — 1.263
0.2 - 1.411 1.440 1.000 1.172 1.302 0.744 0.798 0.798 1.164
0.3 R 1.341 1.369 0.981 1.124 1.240 0.816 0.872 0.853 1.112
0.4 R 1.294 1.321 0.984 1.094 1.199 0.867 0.921 0.889 1.079
0.5 —_ 1.258 1.284 1.005 1.075 1.169 0.904 0.954 0.912 1.056
0.6 R 1.230 1.255 1.046 1.062 1.146 0.931 0.977 0.928 1.040
0.7 —_— 1.206 1.231 1.117 1.054 1.127 0.951 0.992 0.940 1.028
0.8 R 1.186 1.211 —_ 1.050 1.111 0.966 1.003 0.947 1.020
0.9 —_— 1.169 1.193 —_ 1.049 1.098 0.977 1.009 0.953 1.016
1.0 —_— 1.154 1.178 —_— 1.051 1.086 0.984 1.014 0.957 1.014
_ 0.9 1.139 1.162 —_— 1.056 1.075 0.990 1.016 0.959 1.014
- 0.8 1.122 1.145 — 1.066 1.064 0.993 1.017 0.961 1.013
J— 0.7 1.104 1.126 - 1.088 1.052 0.995 1.015 0.961 1.010
—_ 0.6 1.082 1.105 —_ —_— 1.040 0.993 1.010 0.959 1.004
_— 0.5 " 1.058 1.080 U S 1.028 0.986 1.001 0.955 0.994
—_— 0.4 1.029 1.050 I P 1.020 0.972 0.98_5 0.946 0.980
I 0.3 0.993 1.013 I —_ —— 0.949 0.961 0.931 0.957
— 0.2 0.944 0.963 - —— —_— 0.910 0.922 0.503 0.921
—_ 0.1 0.865 0.883 — [ — 0.839 0.850 0.846 0.855
Circular cylinder with hemispherical ends; axis-horizontal for y =< ! and axis-vertical for 1/y < 1.
On the other hand, when y — 0 with Rayz fixed, two-di- Acknowledgments

mensional bodies become horizontally long and thin, and
axisymmetric bodies become horizontal, flat circular disks.
Horizontally long and thin bodies have zero vertical flow
distance and, thus entirely owing the boundary-layer assump-
tion, the boundary-layer thickness becomes zero, which, in
turn, results in infinite heat flow rates.

" One can also obtain an infinitely small aspect ratio by
increasing the horizontal length without changing the vertical
height of two-dimensional bodies. The vertical flow distance
from the leading stagnation point to the trailing stagnation
point of the body is maintained, and the thin boundary-layer
assumption may still be valid. In this case, however, Ray/z
increases due to the larger surface area, and the analysis
predicts infinite, average heat-transfer rates not because of the
zero boundary-layer thickness but solely because of the choice
of the characteristic length VA, which also becomes infinitely
large in the limit. In either case of the above situations, the
body-gravity function plotted in Fig. 5 consistently reflects the
correct behavior of the analysis as y — 0.

Consider a horizontally flat circular disk, which all axisym-
metric bodies become as v — 0. The present analysis predicts
zero laminar convection heat transfer due to zero driving force
along the body surface. In an actual situation, there will be
isotherms forming in the vicinity of the disk as a result of pure
diffusion at first. These isotherms have oblate spheroidal
shapes and will induce driving forces on the fluid along the
contour of the spheroidal surfaces. This induced convective
heat transfer is not accounted for in the present thin
boundary-layer analysis. Consequently, the current body-
gravity function results in lower predictions when axisymmet-
rical bodies of small aspect ratios are examined, as seen in
Table 2 and Fig. 6 for the case of the thin oblate spheroid.

Summary and Conclusions

1) A new form of the body-gravity function Gg¢, which
describes the dependency of the area-mean laminar Nusselt
number on body shape and orientation, has been presented for
two-dimensional and axisymmetric bodies.

2) Based on the new form of the body-gravity function, VA
is obtained as a characteristic length, and it was demonstrated
that VA is superior to other length scales.

3) It was explained for axisymmetric bodies, and demon-
strated for various body shapes that the body-gravity function
based on £ = VA s fairly insensitive to body shapes and
orientations for the range 0.2 < y < 5 where + is the aspect
ratio defined by Eq. (24).
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