THERMAL CONTACT RESISTANCE: EFFECT OF ELASTIC DEFORMATION

Majid Bahrami
M. M. Yovanovich
J. R. Culham

Microelectronics Heat Transfer Laboratory
Department of Mechanical Engineering
University of Waterloo
Ontario, Canada.

21 Semi-Therm Meeting, March 15-17, 2005, San Jose, CA, USA.
OVERVIEW

• introduction and motivation
• microhardness
• model
• present model
• parametric study
• comparison with experimental data
• conclusions
INTRODUCTION

• due to load constraints in *microelectronics* and *avionics* applications, **Thermal Contact Resistance** (TCR) at low contact pressure is important

• Milanez et al. (2003) experimentally showed that existing *plastic* models over-predict TCR at low contact pressures

• new analytical model is developed that predicts TCR at low pressure

• model considers the effect of elastic deformation underneath *plastically* deformed microcontacts
PROBLEM STATEMENT

- contact of conforming rough surfaces in a vacuum

- real contact area is less than 1% of nominal contact area

- using plasticity index, one finds the deformation mode of asperities is **plastic**

- existing plastic TCR models neglect the elastic deformation beneath microcontacts

As a result of elastic deformation, separation between planes reduces, thus:

- more microcontacts are created
• microhardness is not a constant of material

• as indentation depth increases, microhardness decreases

experimental data from Hegazy (1985)
• microcontacts are assumed to deform **plastically**

• elasticity theory is used to determine elastic deformation of half-space due to microcontacts

• elastic deflections due to self and neighboring microcontacts are superimposed to find total deformation

modeled geometry of contact
• at low contact pressures, effects of neighboring microcontacts can be ignored.

• as ε increases, effect of neighboring microcontacts become significant, also displacement of mean plane increases

• as a result, the net elastic deformation beneath the microcontact becomes smaller and eventually approaches zero at relatively large loads

$$\varepsilon = \sqrt{(A_r / A_a)}$$

$$\omega^* = \pi E' \omega / 4 H_{mic} L$$
EFFECT OF ELASTIC DEFORMATION ON CONTACT PARAMETERS

- ratio of separations $\lambda_0/\lambda > 1$, due to elastic deformation effect
- ratio of microcontacts radius $a/a_0 < 1$, but absolute radius of microcontacts, a, increases by increasing the load
- effective microhardness H_{mic} decreases as load increases
• as a result of smaller separation:

• more microcontacts are formed \(n / n_0 > 1 \)

• real contact area is increased, \(A_r / A_{r0} > 1 \)

• thermal resistance is decreased, \(R_{j0} / R_j > 1 \)
four values of $E' = 20$, 60, 160 GPa, and ∞ (pure plastic model) selected

difference between model and pure plastic model decreases as P/H_{mic} increases

beyond certain pressure, difference between pure plastic model and the present model (three values of E') becomes negligible

effect of elastic deformation is more important at low loads
COMPARISON WITH MILANEZ ET AL DATA

experimental data from Milanez et al. (2003)
COMPARISON WITH HEGAZY DATA

Material: Nickel 200
- $\sigma = 0.92 \, \mu m$, $m = 0.110$
- $k_s = 75.28 \, W/mK$
- $E' = 112.09 \, GPa$
- $c_1 = 6.3 \, GPa$, $c_2 = -0.264$
- $b_L = 125 \, mm$
- $H^* = 0.033$

Material: Zr-2.5%wt.
- $\sigma = 0.99 \, \mu m$, $m = 0.083$
- $k_s = 21.3 \, W/mK$
- $E' = 57.26 \, GPa$
- $c_1 = 5.88 \, GPa$, $c_2 = -0.267$
- $b_L = 125 \, mm$
- $H^* = 0.053$

Relative difference $(R_{j0} - R_j)/R_{j0}$ in the applied load range is 17%.

Relative difference $(R_{j0} - R_j)/R_{j0}$ in the applied load range is 30%.

Experimental data from Hegazy (1985)
SUMMARY AND CONCLUSIONS

• new analytical model is proposed for TCR of conforming rough joints in vacuum that accounts for elastic deformation of substrate

• as a result of elastic deformation, mean separations between two contacting surfaces becomes smaller; thus
 – more microcontacts are nucleated,
 – real contact area is increased,
 – thermal contact resistance is decreased

• elastic deformation effect becomes less important at higher loads
• Natural Sciences and Engineering Research Council of Canada (NSERC)

• The Centre for Microelectronics Assembly and Packaging (CMAP)
QUESTION?

contact M. Bahrami
majid@mhtlab.uwaterloo.ca